YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Idealized Simulations of Atmospheric Coastal Flow along the Central Coast of California

    Source: Journal of Applied Meteorology:;1998:;volume( 037 ):;issue: 010::page 1332
    Author:
    Cui, Zhiqiang
    ,
    Tjernström, Michael
    ,
    Grisogono, Branko
    DOI: 10.1175/1520-0450(1998)037<1332:ISOACF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A fully nonlinear, primitive equation hydrostatic numerical model is utilized to study coastal flow along central California, combining a realistic atmospheric model, with a higher-order turbulence closure, with highly simplified background flow. Local terrain and surface forcing of the model are treated realistically, while the synoptic-scale forcing is constant in time and space. Several different simulations with different background wind directions were performed. The motivation is to isolate the main properties of the local flow dependent on the coastal mesoscale influence only and to facilitate a study of the structure of the coastal atmospheric boundary layer, the mean momentum budget, and the atmospheric forcing on the coastal ocean for simplified quasi-stationary but still typical conditions. The model results feature the expected summertime flow phenomena, even with this simplified forcing. A coastal jet occurs in all simulations, and its diurnal variability is realistically simulated. The coastal topography serves as a barrier, and the low-level coastal flow is essentially coast parallel. Among the conclusions are the following. (i) The boundary layer for a northerly jet is more shallow and more variable than that for a southerly jet. One reason is an interaction between waves generated by the coastal mountains and the boundary layer. A realistic inclusion of the Sierra Nevada is important, even for the near-surface coastal atmosphere. (ii) The transition from southerly to northerly flow, when changing the background flow direction, is abrupt for a change in the latter from west to northwest and more gradual for a change east to south. (iii) The low-level flow is in general semigeostrophic. The across-coast momentum balance is geostrophic, while the along-coast momentum balance is dominated by vertical stress divergence and the pressure gradient. Local acceleration and spatial variability close to the coast arise as a consequence of the balance among the remaining terms. For southeasterly background flow, the across-coast momentum balance is dominated by the background synoptic-scale and the mesoscale pressure gradients, sometimes canceling the forcing, thus making this case transitional. (iv) Smaller-scale flow transitions arise for some background flow directions, including an early morning jet reversal north of Monterey, California, and a morning-to-noon low-level eddy formation in the Southern Californian Bight. (v) The model turbulence parameterization provides realistic patterns of the atmospheric forcing on the coastal ocean. (vi) Characteristic signals measured in propagating wind reversals related to boundary layer depth and inversion structure here are seen to correspond to different quasi-stationary conditions.
    • Download: (2.451Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Idealized Simulations of Atmospheric Coastal Flow along the Central Coast of California

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148008
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorCui, Zhiqiang
    contributor authorTjernström, Michael
    contributor authorGrisogono, Branko
    date accessioned2017-06-09T14:06:45Z
    date available2017-06-09T14:06:45Z
    date copyright1998/10/01
    date issued1998
    identifier issn0894-8763
    identifier otherams-12646.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148008
    description abstractA fully nonlinear, primitive equation hydrostatic numerical model is utilized to study coastal flow along central California, combining a realistic atmospheric model, with a higher-order turbulence closure, with highly simplified background flow. Local terrain and surface forcing of the model are treated realistically, while the synoptic-scale forcing is constant in time and space. Several different simulations with different background wind directions were performed. The motivation is to isolate the main properties of the local flow dependent on the coastal mesoscale influence only and to facilitate a study of the structure of the coastal atmospheric boundary layer, the mean momentum budget, and the atmospheric forcing on the coastal ocean for simplified quasi-stationary but still typical conditions. The model results feature the expected summertime flow phenomena, even with this simplified forcing. A coastal jet occurs in all simulations, and its diurnal variability is realistically simulated. The coastal topography serves as a barrier, and the low-level coastal flow is essentially coast parallel. Among the conclusions are the following. (i) The boundary layer for a northerly jet is more shallow and more variable than that for a southerly jet. One reason is an interaction between waves generated by the coastal mountains and the boundary layer. A realistic inclusion of the Sierra Nevada is important, even for the near-surface coastal atmosphere. (ii) The transition from southerly to northerly flow, when changing the background flow direction, is abrupt for a change in the latter from west to northwest and more gradual for a change east to south. (iii) The low-level flow is in general semigeostrophic. The across-coast momentum balance is geostrophic, while the along-coast momentum balance is dominated by vertical stress divergence and the pressure gradient. Local acceleration and spatial variability close to the coast arise as a consequence of the balance among the remaining terms. For southeasterly background flow, the across-coast momentum balance is dominated by the background synoptic-scale and the mesoscale pressure gradients, sometimes canceling the forcing, thus making this case transitional. (iv) Smaller-scale flow transitions arise for some background flow directions, including an early morning jet reversal north of Monterey, California, and a morning-to-noon low-level eddy formation in the Southern Californian Bight. (v) The model turbulence parameterization provides realistic patterns of the atmospheric forcing on the coastal ocean. (vi) Characteristic signals measured in propagating wind reversals related to boundary layer depth and inversion structure here are seen to correspond to different quasi-stationary conditions.
    publisherAmerican Meteorological Society
    titleIdealized Simulations of Atmospheric Coastal Flow along the Central Coast of California
    typeJournal Paper
    journal volume37
    journal issue10
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1998)037<1332:ISOACF>2.0.CO;2
    journal fristpage1332
    journal lastpage1363
    treeJournal of Applied Meteorology:;1998:;volume( 037 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian