YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Use of ScaRaB Measurements for Validating a GOES-Based TOA Radiation Product

    Source: Journal of Applied Meteorology:;1998:;volume( 037 ):;issue: 006::page 591
    Author:
    Trishchenko, Alexander
    ,
    Li, Zhanqing
    DOI: 10.1175/1520-0450(1998)037<0591:UOSMFV>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Lack of calibrated radiation measurements at the top of the atmosphere (TOA) between major spaceborne radiation missions entails inference of the TOA radiation budget from operational weather sensors. The inferred data are subject to uncertainties due to calibration, narrow- to broadband conversion, etc. In this study, a surrogate TOA earth radiation budget product generated from GOES-7 (Geostationary Operational Environmental Satellite) imagery data for use in the U.S. Atmospheric Radiation Measurement (ARM) program was validated using measurements from the ScaRaB radiometer flown on board the METEOR-3/7 satellite. Comparisons were made between coincident and collocated shortwave and longwave radiative quantities derived from GOES and ScaRaB sensors over an ARM experimental locale in the South Great Plains of Oklahoma, during April and July 1994. The comparisons are proven to be instrumental in validating the calibration and narrow- to broadband conversion used to obtain broadband radiative quantities from GOES digital counts. Calibrations for both visible and infrared window channels have small uncertainties, whereas narrow- to broadband conversion of shortwave measurements contains large systematic errors. The caveat stems from use of a quadratic conversion equation instead of a linear one, as was found from ScaRaB narrow- and broadband measurements. The ensuing errors in the estimates of broadband albedo depend on scene brightness, underestimation for bright scenes, and overestimation for dark scenes. As a result, the magnitude of the TOA cloud radiative forcing is underestimated by about 14 W m?2 or 7.5% on a daytime mean basis. After correcting this error, the ratio of cloud radiative forcing (a measure of the impact of clouds on atmospheric absorption) derived from ARM measurements turns out to be 1.07, which is in even closer agreement with radiative transfer models than found from previous studies using original GOES products.
    • Download: (563.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Use of ScaRaB Measurements for Validating a GOES-Based TOA Radiation Product

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147966
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorTrishchenko, Alexander
    contributor authorLi, Zhanqing
    date accessioned2017-06-09T14:06:37Z
    date available2017-06-09T14:06:37Z
    date copyright1998/06/01
    date issued1998
    identifier issn0894-8763
    identifier otherams-12608.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147966
    description abstractLack of calibrated radiation measurements at the top of the atmosphere (TOA) between major spaceborne radiation missions entails inference of the TOA radiation budget from operational weather sensors. The inferred data are subject to uncertainties due to calibration, narrow- to broadband conversion, etc. In this study, a surrogate TOA earth radiation budget product generated from GOES-7 (Geostationary Operational Environmental Satellite) imagery data for use in the U.S. Atmospheric Radiation Measurement (ARM) program was validated using measurements from the ScaRaB radiometer flown on board the METEOR-3/7 satellite. Comparisons were made between coincident and collocated shortwave and longwave radiative quantities derived from GOES and ScaRaB sensors over an ARM experimental locale in the South Great Plains of Oklahoma, during April and July 1994. The comparisons are proven to be instrumental in validating the calibration and narrow- to broadband conversion used to obtain broadband radiative quantities from GOES digital counts. Calibrations for both visible and infrared window channels have small uncertainties, whereas narrow- to broadband conversion of shortwave measurements contains large systematic errors. The caveat stems from use of a quadratic conversion equation instead of a linear one, as was found from ScaRaB narrow- and broadband measurements. The ensuing errors in the estimates of broadband albedo depend on scene brightness, underestimation for bright scenes, and overestimation for dark scenes. As a result, the magnitude of the TOA cloud radiative forcing is underestimated by about 14 W m?2 or 7.5% on a daytime mean basis. After correcting this error, the ratio of cloud radiative forcing (a measure of the impact of clouds on atmospheric absorption) derived from ARM measurements turns out to be 1.07, which is in even closer agreement with radiative transfer models than found from previous studies using original GOES products.
    publisherAmerican Meteorological Society
    titleUse of ScaRaB Measurements for Validating a GOES-Based TOA Radiation Product
    typeJournal Paper
    journal volume37
    journal issue6
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1998)037<0591:UOSMFV>2.0.CO;2
    journal fristpage591
    journal lastpage605
    treeJournal of Applied Meteorology:;1998:;volume( 037 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian