YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamics of the Katabatic Wind Confluence Zone near Siple Coast, West Antarctica

    Source: Journal of Applied Meteorology:;1997:;volume( 036 ):;issue: 002::page 97
    Author:
    Liu, Zhong
    ,
    Bromwich, David H.
    DOI: 10.1175/1520-0450(1997)036<0097:DOTKWC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The surface wind pattern over the ice sheets of Antarctica is irregular with marked areas of airflow confluence near the coastal margins. Where cold air from a large interior area of the ice sheet converges (a confluence zone), an anomalously large supply of air is available to feed the coastal katabatic winds, which, as a result, are intensified and more persistent. The confluence zone inland of Siple Coast, West Antarctica, differs from its East Antarctic counterparts in that the terrain slopes become gentler rather than steeper as the coast is approached. In addition, synoptic processes exert substantially more impact on the behavior of the surface winds. A month-long field program to study the dynamics of the springtime katabatic wind confluence zone has been carried out near Siple Coast. Two sites, Upstream B (83.5°S, 136.1°W) and South Camp (84.5°S, 134.3°W), were established roughly perpendicular to the downslope direction. The field program involved the use of the ground-based remote sensing equipment (sodar and RASS) along with conventional surface and balloon observations. Previous analyses revealed the cross-sectional structure of the confluence zone as consisting of a more buoyant West Antarctic katabatic airflow overlying a less buoyant katabatic airflow originating from East Antarctica. The force balances inside the confluence zone are here investigated for three situations: mean (all available wind profiles from balloon launches), and two extreme cases (light and strong winds). A linear regression method is used to estimate the mean vertical wind shears and horizontal temperature gradients. The vertical wind shears are used to examine whether or not the airflows are in geostrophic balance. The results are 1) the airflow above the surface at both sites is in geostrophic balance for the three situations; 2) inside the West Antarctic katabatic wind zone, there are three forces in the north?south direction?the restoring pressure gradient force associated with blocking of the katabatic and synoptic winds, the downslope buoyancy force, and the synoptic pressure gradient force associated with the time-averaged low in the South Pacific Ocean; 3) above the West Antarctic katabatic wind layer, the observed easterly wind is due to the synoptic pressure gradient force associated with the low; 4) inside the East Antarctic katabatic wind zone, in addition to the above three forces, there is the downslope buoyancy force associated with the inversion; and 5) large-scale transient synoptic systems strongly influence the downslope wind speed and the boundary layer depth, resulting in the light and strong wind cases.
    • Download: (750.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamics of the Katabatic Wind Confluence Zone near Siple Coast, West Antarctica

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147785
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorLiu, Zhong
    contributor authorBromwich, David H.
    date accessioned2017-06-09T14:06:10Z
    date available2017-06-09T14:06:10Z
    date copyright1997/02/01
    date issued1997
    identifier issn0894-8763
    identifier otherams-12445.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147785
    description abstractThe surface wind pattern over the ice sheets of Antarctica is irregular with marked areas of airflow confluence near the coastal margins. Where cold air from a large interior area of the ice sheet converges (a confluence zone), an anomalously large supply of air is available to feed the coastal katabatic winds, which, as a result, are intensified and more persistent. The confluence zone inland of Siple Coast, West Antarctica, differs from its East Antarctic counterparts in that the terrain slopes become gentler rather than steeper as the coast is approached. In addition, synoptic processes exert substantially more impact on the behavior of the surface winds. A month-long field program to study the dynamics of the springtime katabatic wind confluence zone has been carried out near Siple Coast. Two sites, Upstream B (83.5°S, 136.1°W) and South Camp (84.5°S, 134.3°W), were established roughly perpendicular to the downslope direction. The field program involved the use of the ground-based remote sensing equipment (sodar and RASS) along with conventional surface and balloon observations. Previous analyses revealed the cross-sectional structure of the confluence zone as consisting of a more buoyant West Antarctic katabatic airflow overlying a less buoyant katabatic airflow originating from East Antarctica. The force balances inside the confluence zone are here investigated for three situations: mean (all available wind profiles from balloon launches), and two extreme cases (light and strong winds). A linear regression method is used to estimate the mean vertical wind shears and horizontal temperature gradients. The vertical wind shears are used to examine whether or not the airflows are in geostrophic balance. The results are 1) the airflow above the surface at both sites is in geostrophic balance for the three situations; 2) inside the West Antarctic katabatic wind zone, there are three forces in the north?south direction?the restoring pressure gradient force associated with blocking of the katabatic and synoptic winds, the downslope buoyancy force, and the synoptic pressure gradient force associated with the time-averaged low in the South Pacific Ocean; 3) above the West Antarctic katabatic wind layer, the observed easterly wind is due to the synoptic pressure gradient force associated with the low; 4) inside the East Antarctic katabatic wind zone, in addition to the above three forces, there is the downslope buoyancy force associated with the inversion; and 5) large-scale transient synoptic systems strongly influence the downslope wind speed and the boundary layer depth, resulting in the light and strong wind cases.
    publisherAmerican Meteorological Society
    titleDynamics of the Katabatic Wind Confluence Zone near Siple Coast, West Antarctica
    typeJournal Paper
    journal volume36
    journal issue2
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1997)036<0097:DOTKWC>2.0.CO;2
    journal fristpage97
    journal lastpage118
    treeJournal of Applied Meteorology:;1997:;volume( 036 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian