YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Pollutant Transport during High-Ozone Episodes in the Southern Appalachian Mountains

    Source: Journal of Applied Meteorology:;1996:;volume( 035 ):;issue: 011::page 2105
    Author:
    Mueller, Stephen F.
    ,
    Song, Aaron
    ,
    Noms, William B.
    ,
    Gupta, Shekar
    ,
    McNider, Richard T.
    DOI: 10.1175/1520-0450(1996)035<2105:MPTDHO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Airflow patterns and pollution transport in the southern Appalachian Mountains region of the southeastern United States are examined using mesoscale meteorological models and a Lagrangian particle dispersion model (LPDM). The two primary goals of this work are 1) to identify a meteorological modeling methodology that can be used in regional photochemical modeling, and 2) to identify large regional ozone precursor sources that may impact the southern Appalachians during periods having high ozone levels. Four episodes characterized by measured high levels of ozone (1-h average concentrations greater than 90 ppb) at remote monitoring sites are the focus of the modeling efforts. To address the first goal, several methods of airflow modeling involving varying degrees of complexity are examined to find one that reliably simulates the complex wind patterns that occur. A hydrostatic model with homogeneous initialization, a nonhydrostatic model with homogeneous initialization, and a nonhydrostatic model with nonhomogeneous initialization and four-dimensional data assimilation (FDDA) are evaluated against available wind observations. The method using nonhomogeneous initialization and FDDA is found to best reproduce observed wind patterns. Results of a test of model sensitivity to the strength of the FDDA are described. In addressing the second project goal, a LPDM driven by computed meteorological fields is used to simulate the potential for ozone precursor emissions (in the form of NOx) to be transported from nearby major sources toward the mountains. LPDM simulations indicate that one of the urban areas was the most likely source to influence the monitoring sites experiencing high ozone levels during three of the four episodes. However, none of the plumes are computed to be over the monitoring sites for the length of time that the high ozone concentrations were actually observed. Detailed air quality data for one episode suggest the presence of a large urban plume passing over the mountains and originating from outside the modeling domain. This implies that a larger domain is needed for photochemical modeling.
    • Download: (1.352Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Pollutant Transport during High-Ozone Episodes in the Southern Appalachian Mountains

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147763
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorMueller, Stephen F.
    contributor authorSong, Aaron
    contributor authorNoms, William B.
    contributor authorGupta, Shekar
    contributor authorMcNider, Richard T.
    date accessioned2017-06-09T14:06:07Z
    date available2017-06-09T14:06:07Z
    date copyright1996/11/01
    date issued1996
    identifier issn0894-8763
    identifier otherams-12425.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147763
    description abstractAirflow patterns and pollution transport in the southern Appalachian Mountains region of the southeastern United States are examined using mesoscale meteorological models and a Lagrangian particle dispersion model (LPDM). The two primary goals of this work are 1) to identify a meteorological modeling methodology that can be used in regional photochemical modeling, and 2) to identify large regional ozone precursor sources that may impact the southern Appalachians during periods having high ozone levels. Four episodes characterized by measured high levels of ozone (1-h average concentrations greater than 90 ppb) at remote monitoring sites are the focus of the modeling efforts. To address the first goal, several methods of airflow modeling involving varying degrees of complexity are examined to find one that reliably simulates the complex wind patterns that occur. A hydrostatic model with homogeneous initialization, a nonhydrostatic model with homogeneous initialization, and a nonhydrostatic model with nonhomogeneous initialization and four-dimensional data assimilation (FDDA) are evaluated against available wind observations. The method using nonhomogeneous initialization and FDDA is found to best reproduce observed wind patterns. Results of a test of model sensitivity to the strength of the FDDA are described. In addressing the second project goal, a LPDM driven by computed meteorological fields is used to simulate the potential for ozone precursor emissions (in the form of NOx) to be transported from nearby major sources toward the mountains. LPDM simulations indicate that one of the urban areas was the most likely source to influence the monitoring sites experiencing high ozone levels during three of the four episodes. However, none of the plumes are computed to be over the monitoring sites for the length of time that the high ozone concentrations were actually observed. Detailed air quality data for one episode suggest the presence of a large urban plume passing over the mountains and originating from outside the modeling domain. This implies that a larger domain is needed for photochemical modeling.
    publisherAmerican Meteorological Society
    titleModeling Pollutant Transport during High-Ozone Episodes in the Southern Appalachian Mountains
    typeJournal Paper
    journal volume35
    journal issue11
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1996)035<2105:MPTDHO>2.0.CO;2
    journal fristpage2105
    journal lastpage2120
    treeJournal of Applied Meteorology:;1996:;volume( 035 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian