YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparisons of Cross Sections for Melting Hydrometeors as Derived from Dielectric Mixing Formulas and a Numerical Method

    Source: Journal of Applied Meteorology:;1996:;volume( 035 ):;issue: 010::page 1658
    Author:
    Meneghini, R.
    ,
    Liao, L.
    DOI: 10.1175/1520-0450(1996)035<1658:COCSFM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: One of the impediments to the interpretation of radar signatures from the melting layer is the uncertainty over the dielectric mixing formula for ice-water mixtures. In the commonly used Maxwell Garnett mixing formula, the dielectric constant for ice inclusions in a water matrix differs from that for water inclusions in an ice matrix for the same fraction of meltwater. While the choice of materials for the matrix and inclusion is clear for either small or large fractions of meltwater, it is not obvious how these are to be chosen in the intermediate ranges of melting. In this paper, cross sections derived from the various mixing formulas are compared to a conjugate gradient-fast Fourier transform numerical method. In the numerical method the particle is divided into equi-volume subcells in which the composition of the particle is controlled by assigning a probability of water to each subcell. For a uniform distribution of water and ice, where the probability of water in a subcell is independent of its location within the particle, the numerical results for fractional water contents of less than about 0.7 indicate that the scattering coefficients are closest to those predicted by the Maxwell Garnett mixing formula if an ice matrix with water inclusions is assumed. However, if the meltwater is highly concentrated near the boundary of the particle or if the fractional volume of water is greater than about 0.8, the Maxwell Garnett formula is in fair agreement with the numerical results, if the roles of ice and water are interchanged. A discussion of the relevance of these results to the modeling of melting snow aggregates and the interpretation of radar signatures of the bright band is given in the final section of the paper.
    • Download: (1.248Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparisons of Cross Sections for Melting Hydrometeors as Derived from Dielectric Mixing Formulas and a Numerical Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147730
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorMeneghini, R.
    contributor authorLiao, L.
    date accessioned2017-06-09T14:06:00Z
    date available2017-06-09T14:06:00Z
    date copyright1996/10/01
    date issued1996
    identifier issn0894-8763
    identifier otherams-12396.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147730
    description abstractOne of the impediments to the interpretation of radar signatures from the melting layer is the uncertainty over the dielectric mixing formula for ice-water mixtures. In the commonly used Maxwell Garnett mixing formula, the dielectric constant for ice inclusions in a water matrix differs from that for water inclusions in an ice matrix for the same fraction of meltwater. While the choice of materials for the matrix and inclusion is clear for either small or large fractions of meltwater, it is not obvious how these are to be chosen in the intermediate ranges of melting. In this paper, cross sections derived from the various mixing formulas are compared to a conjugate gradient-fast Fourier transform numerical method. In the numerical method the particle is divided into equi-volume subcells in which the composition of the particle is controlled by assigning a probability of water to each subcell. For a uniform distribution of water and ice, where the probability of water in a subcell is independent of its location within the particle, the numerical results for fractional water contents of less than about 0.7 indicate that the scattering coefficients are closest to those predicted by the Maxwell Garnett mixing formula if an ice matrix with water inclusions is assumed. However, if the meltwater is highly concentrated near the boundary of the particle or if the fractional volume of water is greater than about 0.8, the Maxwell Garnett formula is in fair agreement with the numerical results, if the roles of ice and water are interchanged. A discussion of the relevance of these results to the modeling of melting snow aggregates and the interpretation of radar signatures of the bright band is given in the final section of the paper.
    publisherAmerican Meteorological Society
    titleComparisons of Cross Sections for Melting Hydrometeors as Derived from Dielectric Mixing Formulas and a Numerical Method
    typeJournal Paper
    journal volume35
    journal issue10
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1996)035<1658:COCSFM>2.0.CO;2
    journal fristpage1658
    journal lastpage1670
    treeJournal of Applied Meteorology:;1996:;volume( 035 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian