YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Model for Chemical and Meteorological Processes in the Atmospheric Boundary Layer. Part I: A Model Description and a One-Dimensional Parameter Study

    Source: Journal of Applied Meteorology:;1996:;volume( 035 ):;issue: 006::page 939
    Author:
    Svensson, Gunilla
    DOI: 10.1175/1520-0450(1996)035<0939:ANMFCA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A numerical flow model is presented for the atmospheric boundary layer, including dispersion and chemical transformations of air pollutants. The model is a three-dimensional time-dependent one for the mesoscale based on the conservation equations for mass, heat, motion, water, and chemical species. The present version is hydrostatic, with a turbulence closure of second order. Only gas-phase chemistry is included and the chemical reaction scheme used is a modified condensed version of the carbon bond mechanism. A parameter study with a one-dimensional version of the model system is performed for the meteorological conditions of a typical summer day. Simulations with constant and diurnally varied deposition velocity are compared. The conclusion is that the difference in the surface concentration is minor. The difference in the maximum concentration between a simulation with a diurnally varied deposition velocity and a simulation with constant value equal to the maximum of the diurnally varied deposition velocity is about 1%. Other parameters affecting the results studied here are the temperature, the influence of pressure and water vapor on the rate constants, and the actinic flux. The resulting concentrations of ozone, peroxyacyl nitrate, and nitric acid are presented. The timing and the magnitude of peak concentrations of these species are sensitive to alterations in the parameters. When comparing the various simulations with a control run, the largest discrepancies are seen in the first simulation day, for the cases with higher albedo, and when deposition is included.
    • Download: (1.240Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Model for Chemical and Meteorological Processes in the Atmospheric Boundary Layer. Part I: A Model Description and a One-Dimensional Parameter Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147653
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorSvensson, Gunilla
    date accessioned2017-06-09T14:05:48Z
    date available2017-06-09T14:05:48Z
    date copyright1996/06/01
    date issued1996
    identifier issn0894-8763
    identifier otherams-12326.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147653
    description abstractA numerical flow model is presented for the atmospheric boundary layer, including dispersion and chemical transformations of air pollutants. The model is a three-dimensional time-dependent one for the mesoscale based on the conservation equations for mass, heat, motion, water, and chemical species. The present version is hydrostatic, with a turbulence closure of second order. Only gas-phase chemistry is included and the chemical reaction scheme used is a modified condensed version of the carbon bond mechanism. A parameter study with a one-dimensional version of the model system is performed for the meteorological conditions of a typical summer day. Simulations with constant and diurnally varied deposition velocity are compared. The conclusion is that the difference in the surface concentration is minor. The difference in the maximum concentration between a simulation with a diurnally varied deposition velocity and a simulation with constant value equal to the maximum of the diurnally varied deposition velocity is about 1%. Other parameters affecting the results studied here are the temperature, the influence of pressure and water vapor on the rate constants, and the actinic flux. The resulting concentrations of ozone, peroxyacyl nitrate, and nitric acid are presented. The timing and the magnitude of peak concentrations of these species are sensitive to alterations in the parameters. When comparing the various simulations with a control run, the largest discrepancies are seen in the first simulation day, for the cases with higher albedo, and when deposition is included.
    publisherAmerican Meteorological Society
    titleA Numerical Model for Chemical and Meteorological Processes in the Atmospheric Boundary Layer. Part I: A Model Description and a One-Dimensional Parameter Study
    typeJournal Paper
    journal volume35
    journal issue6
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1996)035<0939:ANMFCA>2.0.CO;2
    journal fristpage939
    journal lastpage954
    treeJournal of Applied Meteorology:;1996:;volume( 035 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian