YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ground- and Space-Based Temperature and Humidity Retrievals: Statistical Evaluation

    Source: Journal of Applied Meteorology:;1996:;volume( 035 ):;issue: 003::page 444
    Author:
    Stankov, B. Boba
    DOI: 10.1175/1520-0450(1996)035<0444:GASBTA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A near-real-time integrated temperature and water vapor sounding system has been designed and in operation since June 1993. It combines hourly data from the ground-based radio acoustic sounding system (RASS), a two-channel microwave radiometer, standard surface meteorological instruments, a lidar ceilometer, and the Aerodynamic Research Incorporated Communication, Addressing and Reporting System aboard commercial airlines with space-based data from the TIROS-N Operational Vertical Sounder (TOVS). The physical retrieval algorithm provided by the International TOVS Processing Package is used for combining the ground- and space-based temperature and humidity profiles. The first-guess profiles of temperature and humidity required by the physical retrieval algorithm arc obtained by using a statistical inversion technique and the ground-based remote sensors measurements. Statistical error estimates are presented for the hourly. near-real-time, ground-, and space-based retrieved temperature and humidity profiles based on 119 soundings collected during a two-month-long experiment conducted at Platteville, Colorado, during February and March 1994. Radiosonde data collected by the Environmental Technology Laboratory and the Winter Icing and Storms Program in Platteville and the National Weather Service in Denver, Colorado, are used for comparison. The comparison showed excellent agreement between retrieved and radiosonde soundings. Retrieved temperature profiles show better performance than the retrieved humidity profiles because of the high vertical resolution of the RASS measurements. It is suggested that adding more information from the new individual remote sensors as they develop, through the technique used here, would lead to further profiling improvements.
    • Download: (1.952Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ground- and Space-Based Temperature and Humidity Retrievals: Statistical Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147611
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorStankov, B. Boba
    date accessioned2017-06-09T14:05:39Z
    date available2017-06-09T14:05:39Z
    date copyright1996/03/01
    date issued1996
    identifier issn0894-8763
    identifier otherams-12289.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147611
    description abstractA near-real-time integrated temperature and water vapor sounding system has been designed and in operation since June 1993. It combines hourly data from the ground-based radio acoustic sounding system (RASS), a two-channel microwave radiometer, standard surface meteorological instruments, a lidar ceilometer, and the Aerodynamic Research Incorporated Communication, Addressing and Reporting System aboard commercial airlines with space-based data from the TIROS-N Operational Vertical Sounder (TOVS). The physical retrieval algorithm provided by the International TOVS Processing Package is used for combining the ground- and space-based temperature and humidity profiles. The first-guess profiles of temperature and humidity required by the physical retrieval algorithm arc obtained by using a statistical inversion technique and the ground-based remote sensors measurements. Statistical error estimates are presented for the hourly. near-real-time, ground-, and space-based retrieved temperature and humidity profiles based on 119 soundings collected during a two-month-long experiment conducted at Platteville, Colorado, during February and March 1994. Radiosonde data collected by the Environmental Technology Laboratory and the Winter Icing and Storms Program in Platteville and the National Weather Service in Denver, Colorado, are used for comparison. The comparison showed excellent agreement between retrieved and radiosonde soundings. Retrieved temperature profiles show better performance than the retrieved humidity profiles because of the high vertical resolution of the RASS measurements. It is suggested that adding more information from the new individual remote sensors as they develop, through the technique used here, would lead to further profiling improvements.
    publisherAmerican Meteorological Society
    titleGround- and Space-Based Temperature and Humidity Retrievals: Statistical Evaluation
    typeJournal Paper
    journal volume35
    journal issue3
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1996)035<0444:GASBTA>2.0.CO;2
    journal fristpage444
    journal lastpage463
    treeJournal of Applied Meteorology:;1996:;volume( 035 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian