YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Radiosonde Temperature Measurements in Strong Inversions: Correction for Thermal Lag Based on an Experiment at the South Pole

    Source: Journal of Atmospheric and Oceanic Technology:;1997:;volume( 014 ):;issue: 001::page 45
    Author:
    Mahesh, Ashwin
    ,
    Walden, Von P.
    ,
    Warren, Stephen G.
    DOI: 10.1175/1520-0426(1997)014<0045:RTMISI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Very steep shallow temperature inversions occur during most of the year in the near-surface layer on the Antarctic Plateau. A radiosonde carried by a balloon rising at a few meters per second does not measure such inversions accurately because the response time of the thermistor is several seconds. To quantify this error, the authors flew a radiosonde on a tethered kite on several occasions in winter at South Pole Station immediately prior to the routine launch of the same sonde on a weather balloon. In all cases, the equilibrated temperatures measured by the tethered sonde at a given pressure level were higher than those from the balloon-borne sonde throughout most of the inversion layer. Assuming that the tethered sonde data represent the true atmospheric temperature profile, a procedure can be developed to correct the temperature data from routine radiosonde soundings for the finite response time of the thermistor. The authors devise an accurate deconvolution method to retrieve the true atmospheric temperature profile from the radiosonde data when the thermistor response time is known. However, a simple technique of shifting the profile a few seconds back in time gives results that are nearly equivalent to the deconvolution. Additional temperature errors result at the South Pole because the radiosonde is launched immediately after being brought out of a warm room, making it necessary to further adjust data from the lowest few tens of meters. It is found that the temperature errors cause a 0.3 W m?2 error in the computed downward longwave radiation flux in winter at the South Pole, most of which is in spectral regions dominated by emission from water vapor and carbon dioxide. This is similar to the 0.5 W m?2 change induced by the increase in carbon dioxide concentration from preindustrial to present values. The thermal lag is shown to be significant also for winter profiles in Alaska. A correction for thermal lag is recommended for all situations where radiosondes are used to measure steep temperature gradients in the boundary layer: in polar regions throughout the year, at midlatitude continental stations in winter, and at the tops of subtropical marine stratocumulus clouds.
    • Download: (159.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Radiosonde Temperature Measurements in Strong Inversions: Correction for Thermal Lag Based on an Experiment at the South Pole

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147590
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorMahesh, Ashwin
    contributor authorWalden, Von P.
    contributor authorWarren, Stephen G.
    date accessioned2017-06-09T14:05:36Z
    date available2017-06-09T14:05:36Z
    date copyright1997/02/01
    date issued1997
    identifier issn0739-0572
    identifier otherams-1227.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147590
    description abstractVery steep shallow temperature inversions occur during most of the year in the near-surface layer on the Antarctic Plateau. A radiosonde carried by a balloon rising at a few meters per second does not measure such inversions accurately because the response time of the thermistor is several seconds. To quantify this error, the authors flew a radiosonde on a tethered kite on several occasions in winter at South Pole Station immediately prior to the routine launch of the same sonde on a weather balloon. In all cases, the equilibrated temperatures measured by the tethered sonde at a given pressure level were higher than those from the balloon-borne sonde throughout most of the inversion layer. Assuming that the tethered sonde data represent the true atmospheric temperature profile, a procedure can be developed to correct the temperature data from routine radiosonde soundings for the finite response time of the thermistor. The authors devise an accurate deconvolution method to retrieve the true atmospheric temperature profile from the radiosonde data when the thermistor response time is known. However, a simple technique of shifting the profile a few seconds back in time gives results that are nearly equivalent to the deconvolution. Additional temperature errors result at the South Pole because the radiosonde is launched immediately after being brought out of a warm room, making it necessary to further adjust data from the lowest few tens of meters. It is found that the temperature errors cause a 0.3 W m?2 error in the computed downward longwave radiation flux in winter at the South Pole, most of which is in spectral regions dominated by emission from water vapor and carbon dioxide. This is similar to the 0.5 W m?2 change induced by the increase in carbon dioxide concentration from preindustrial to present values. The thermal lag is shown to be significant also for winter profiles in Alaska. A correction for thermal lag is recommended for all situations where radiosondes are used to measure steep temperature gradients in the boundary layer: in polar regions throughout the year, at midlatitude continental stations in winter, and at the tops of subtropical marine stratocumulus clouds.
    publisherAmerican Meteorological Society
    titleRadiosonde Temperature Measurements in Strong Inversions: Correction for Thermal Lag Based on an Experiment at the South Pole
    typeJournal Paper
    journal volume14
    journal issue1
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1997)014<0045:RTMISI>2.0.CO;2
    journal fristpage45
    journal lastpage53
    treeJournal of Atmospheric and Oceanic Technology:;1997:;volume( 014 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian