YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulations of Observed Arctic Stratus Clouds Using a Second-Order Turbulence Closure Model

    Source: Journal of Applied Meteorology:;1996:;volume( 035 ):;issue: 001::page 47
    Author:
    Smith, W. S.
    ,
    Kao, C-Y. J.
    DOI: 10.1175/1520-0450(1996)035<0047:NSOOAS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A high-resolution one-dimensional version of a second-order turbulence closure radiative-convective model, developed at Los Alamos National Laboratory, is used to simulate the interactions among turbulence, radiation, and bulk cloud parameters in stratiform clouds observed during the Arctic Stratus Experiment conducted during June 1980 over the Beaufort Sea. The fidelity of the model to the underlying physics is assessed by comparing the modeled evolution of the cloud-capped boundary layer against data reported for two particular days of observations. Over the period encompassed by these observations, the boundary layer evolved from a well-mixed cloud-capped boundary layer overlying a stable cloudy surface layer to a shallower well-mixed boundary layer with a single upper cloud deck and a clear, diminished, stable surface layer. The model was able to reproduce the observed profiles of the liquid water content, cloud-base height, radiative heating rates, and the mean and turbulence variables over the period of observation fairly well. The formation and eventual dissipation of the surface cloud feature over the period of the simulation was found to be caused by the formation of a stable surface layer as the modeled air mass moved over the relatively cold Beaufort Sea region. Condensation occurred as heat in the surface layer was transported downward toward the sea surface. Eventual dissipation of the surface cloud layer resulted from the transport of moisture in the surface layer downward toward the sea surface. The results show that the subsidence was the major influence on the evolution of the cloud-top height but was not a major factor for dissipation of either cloud layer during the simulation.
    • Download: (1.066Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulations of Observed Arctic Stratus Clouds Using a Second-Order Turbulence Closure Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147580
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorSmith, W. S.
    contributor authorKao, C-Y. J.
    date accessioned2017-06-09T14:05:34Z
    date available2017-06-09T14:05:34Z
    date copyright1996/01/01
    date issued1996
    identifier issn0894-8763
    identifier otherams-12260.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147580
    description abstractA high-resolution one-dimensional version of a second-order turbulence closure radiative-convective model, developed at Los Alamos National Laboratory, is used to simulate the interactions among turbulence, radiation, and bulk cloud parameters in stratiform clouds observed during the Arctic Stratus Experiment conducted during June 1980 over the Beaufort Sea. The fidelity of the model to the underlying physics is assessed by comparing the modeled evolution of the cloud-capped boundary layer against data reported for two particular days of observations. Over the period encompassed by these observations, the boundary layer evolved from a well-mixed cloud-capped boundary layer overlying a stable cloudy surface layer to a shallower well-mixed boundary layer with a single upper cloud deck and a clear, diminished, stable surface layer. The model was able to reproduce the observed profiles of the liquid water content, cloud-base height, radiative heating rates, and the mean and turbulence variables over the period of observation fairly well. The formation and eventual dissipation of the surface cloud feature over the period of the simulation was found to be caused by the formation of a stable surface layer as the modeled air mass moved over the relatively cold Beaufort Sea region. Condensation occurred as heat in the surface layer was transported downward toward the sea surface. Eventual dissipation of the surface cloud layer resulted from the transport of moisture in the surface layer downward toward the sea surface. The results show that the subsidence was the major influence on the evolution of the cloud-top height but was not a major factor for dissipation of either cloud layer during the simulation.
    publisherAmerican Meteorological Society
    titleNumerical Simulations of Observed Arctic Stratus Clouds Using a Second-Order Turbulence Closure Model
    typeJournal Paper
    journal volume35
    journal issue1
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1996)035<0047:NSOOAS>2.0.CO;2
    journal fristpage47
    journal lastpage59
    treeJournal of Applied Meteorology:;1996:;volume( 035 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian