YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Simple Empirical Model for Predicting the Decay of Tropical Cyclone Winds after Landfall

    Source: Journal of Applied Meteorology:;1995:;volume( 034 ):;issue: 011::page 2499
    Author:
    Kaplan, John
    ,
    DeMaria, Mark
    DOI: 10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An empirical model for predicting the maximum wind of landfalling tropical cyclones is developed. The model is based upon the observation that the wind speed decay rate after landfall is proportional to the wind speed. Observations also indicate that the wind speed decays to a small, but nonzero, background wind speed. With these assumptions, the wind speed is determined from a simple two-parameter exponential decay model, which is a function of the wind speed at landfall and the time since landfall. A correction can also be added that accounts for differences between storms that move inland slowly and storms that move inland rapidly. The model parameters are determined from the National Hurricane Center best track intensities of all U.S. landfalling tropical cyclones south of 37°N for the period 1967?93. Three storms that made landfall in Florida prior to 1967 were also included in the sample. Results show that the two-parameter model explains 91% of the variance of the best track intensity changes. When the correction that accounts for variations in the distance inland is added, the model explains 93% of the variance. This modal can be used for operational forecasting of the maximum winds of landfalling tropical cyclones. It can also be used to estimate the maximum inland penetration of hurricane force winds (or any wind speed threshold) for a given initial storm intensity. The maximum winds at an inland point will occur for a storm that moves inland perpendicular to the coastline. Under this assumption, the maximum wind at a fixed point becomes a function of the wind speed at landfall and the translational speed of motion. For planning purposes, maps of the maximum inland wind speed can be prepared for various initial storm intensities and speeds of motion. The model can also be applied to the entire wind field of an individual storm to provide a two-dimensional field of the maximum wind during a given storm. Examples of each of these applications are presented.
    • Download: (1.590Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Simple Empirical Model for Predicting the Decay of Tropical Cyclone Winds after Landfall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147549
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorKaplan, John
    contributor authorDeMaria, Mark
    date accessioned2017-06-09T14:05:29Z
    date available2017-06-09T14:05:29Z
    date copyright1995/11/01
    date issued1995
    identifier issn0894-8763
    identifier otherams-12232.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147549
    description abstractAn empirical model for predicting the maximum wind of landfalling tropical cyclones is developed. The model is based upon the observation that the wind speed decay rate after landfall is proportional to the wind speed. Observations also indicate that the wind speed decays to a small, but nonzero, background wind speed. With these assumptions, the wind speed is determined from a simple two-parameter exponential decay model, which is a function of the wind speed at landfall and the time since landfall. A correction can also be added that accounts for differences between storms that move inland slowly and storms that move inland rapidly. The model parameters are determined from the National Hurricane Center best track intensities of all U.S. landfalling tropical cyclones south of 37°N for the period 1967?93. Three storms that made landfall in Florida prior to 1967 were also included in the sample. Results show that the two-parameter model explains 91% of the variance of the best track intensity changes. When the correction that accounts for variations in the distance inland is added, the model explains 93% of the variance. This modal can be used for operational forecasting of the maximum winds of landfalling tropical cyclones. It can also be used to estimate the maximum inland penetration of hurricane force winds (or any wind speed threshold) for a given initial storm intensity. The maximum winds at an inland point will occur for a storm that moves inland perpendicular to the coastline. Under this assumption, the maximum wind at a fixed point becomes a function of the wind speed at landfall and the translational speed of motion. For planning purposes, maps of the maximum inland wind speed can be prepared for various initial storm intensities and speeds of motion. The model can also be applied to the entire wind field of an individual storm to provide a two-dimensional field of the maximum wind during a given storm. Examples of each of these applications are presented.
    publisherAmerican Meteorological Society
    titleA Simple Empirical Model for Predicting the Decay of Tropical Cyclone Winds after Landfall
    typeJournal Paper
    journal volume34
    journal issue11
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2
    journal fristpage2499
    journal lastpage2512
    treeJournal of Applied Meteorology:;1995:;volume( 034 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian