YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Modeling of the Turbulent Fluxes of Chemically Reactive Trace Gases in the Atmospheric Boundary Layer

    Source: Journal of Applied Meteorology:;1994:;volume( 033 ):;issue: 007::page 835
    Author:
    Gao, W.
    ,
    Wesely, M. L.
    DOI: 10.1175/1520-0450(1994)033<0835:NMOTTF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Turbulent fluxes of chemically reactive trace gases in the neutral atmospheric boundary layer (ABL) were simulated with a one-dimensional, coupled diffusion-chemistry model. The effects of rapid chemical reactions were included with a suite of second-order turbulence equations in which additional chemical terms were used to describe contributions to flux by rapid chemical production and loss. A total of 69 chemical reactions were incorporated to describe basic atmospheric photochemistry coupled with chemistry for isoprene and its oxidation products. Daytime flux Profiles of O3, NO, N02, OH, isoprene, and other depositing gases were simulated with assumed rates of NO emission from soil, isoprene emission rates appropriate for a deciduous forest, and initial concentrations of various chemical species typical of a remote area. Results show that chemical reactions can influence vertical fluxes by producing sources or sinks in the atmosphere and by changing mean concentrations. Magnitudes of NO and NO2 fluxes decrease with height at a much greater rate than predicted by a nonreactive model. The NO emitted from soil can quickly be converted to N02, and the upward NO flux can decrease by as much as 80% at a height of 100 m. The magnitude of NO2 flux decreases sharply with height because of the NO-to-NO2 conversion, but NO2 deposition near the surface tends to be enhanced by an increase in NO2 concentration near the surface NO emission source. The Profile of 03 flux simulated with forced entrainment at the top of the ABL closely matches the profile derived from a field experiment, and the flux throughout the ABL increases slightly because mean O3 concentrations are increased by chemical production associated with isoprene emissions. Simulated profiles of isoprene flux closely agree with results of a nonreactive model and appear to be controlled primarily by surface emission and vertical turbulent mixing. Chemical reactions appear to have a substantial effect on vertical concentration gradients, diffusivities, and deposition velocities for NO2, NO3, and N2O5. The reactions have a negligible effect on the deposition velocities for O3, HCHO, CH3OOH, HNO2, H2O2, and HNO3.
    • Download: (964.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Modeling of the Turbulent Fluxes of Chemically Reactive Trace Gases in the Atmospheric Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147358
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorGao, W.
    contributor authorWesely, M. L.
    date accessioned2017-06-09T14:04:56Z
    date available2017-06-09T14:04:56Z
    date copyright1994/07/01
    date issued1994
    identifier issn0894-8763
    identifier otherams-12060.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147358
    description abstractTurbulent fluxes of chemically reactive trace gases in the neutral atmospheric boundary layer (ABL) were simulated with a one-dimensional, coupled diffusion-chemistry model. The effects of rapid chemical reactions were included with a suite of second-order turbulence equations in which additional chemical terms were used to describe contributions to flux by rapid chemical production and loss. A total of 69 chemical reactions were incorporated to describe basic atmospheric photochemistry coupled with chemistry for isoprene and its oxidation products. Daytime flux Profiles of O3, NO, N02, OH, isoprene, and other depositing gases were simulated with assumed rates of NO emission from soil, isoprene emission rates appropriate for a deciduous forest, and initial concentrations of various chemical species typical of a remote area. Results show that chemical reactions can influence vertical fluxes by producing sources or sinks in the atmosphere and by changing mean concentrations. Magnitudes of NO and NO2 fluxes decrease with height at a much greater rate than predicted by a nonreactive model. The NO emitted from soil can quickly be converted to N02, and the upward NO flux can decrease by as much as 80% at a height of 100 m. The magnitude of NO2 flux decreases sharply with height because of the NO-to-NO2 conversion, but NO2 deposition near the surface tends to be enhanced by an increase in NO2 concentration near the surface NO emission source. The Profile of 03 flux simulated with forced entrainment at the top of the ABL closely matches the profile derived from a field experiment, and the flux throughout the ABL increases slightly because mean O3 concentrations are increased by chemical production associated with isoprene emissions. Simulated profiles of isoprene flux closely agree with results of a nonreactive model and appear to be controlled primarily by surface emission and vertical turbulent mixing. Chemical reactions appear to have a substantial effect on vertical concentration gradients, diffusivities, and deposition velocities for NO2, NO3, and N2O5. The reactions have a negligible effect on the deposition velocities for O3, HCHO, CH3OOH, HNO2, H2O2, and HNO3.
    publisherAmerican Meteorological Society
    titleNumerical Modeling of the Turbulent Fluxes of Chemically Reactive Trace Gases in the Atmospheric Boundary Layer
    typeJournal Paper
    journal volume33
    journal issue7
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1994)033<0835:NMOTTF>2.0.CO;2
    journal fristpage835
    journal lastpage847
    treeJournal of Applied Meteorology:;1994:;volume( 033 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian