YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Technique for Deriving Column-integrated Water Content Using VAS Split-Window Data

    Source: Journal of Applied Meteorology:;1993:;volume( 032 ):;issue: 007::page 1226
    Author:
    Guillory, Anthony R.
    ,
    Jedlovec, Gary J.
    ,
    Fuelberg, Henry E.
    DOI: 10.1175/1520-0450(1993)032<1226:ATFDCI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An algorithm is examined that uses Visible?Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS) 11- and 12-µm (split-window) data to derive column-integrated water content (IWC) at mesoscale resolution. The algorithm is physically based and derives its first-guess information from radiosonde data. The procedure is applied first to a test case dataset and then to the 19 June 1986 study day from the Cooperative Huntsville Meteorological Experiment (COHMEX). Ground truth data for verifying results from the technique include IWC from National Weather Service and COHMEX radiosondes, the Multispectral Atmospheric Mapping Sensor (MAMS), and a special set of VAS soundings (12 channel) using an independent retrieval method. Results from the test case show reasonable accuracy with the root-mean-square errors as low as ±3.8 mm. On the 19 June case study day IWC analyses depict reasonable gradients and exhibit good spatial and temporal continuity. Furthermore, they provide insight into preferred regions for cumulus cloud and thunderstorm formation. On the average, a mean absolute retrieval error of 2.4 mm (an 8.1% error) and a root-mean-square error of ±2.9 mm are obtained on the case study day. These results compare favorably with those from existing VAS IWC techniques. Overall, the findings indicate that the technique has excellent potential to depict mesoscale moisture variations.
    • Download: (1.375Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Technique for Deriving Column-integrated Water Content Using VAS Split-Window Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147221
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorGuillory, Anthony R.
    contributor authorJedlovec, Gary J.
    contributor authorFuelberg, Henry E.
    date accessioned2017-06-09T14:04:29Z
    date available2017-06-09T14:04:29Z
    date copyright1993/07/01
    date issued1993
    identifier issn0894-8763
    identifier otherams-11938.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147221
    description abstractAn algorithm is examined that uses Visible?Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS) 11- and 12-µm (split-window) data to derive column-integrated water content (IWC) at mesoscale resolution. The algorithm is physically based and derives its first-guess information from radiosonde data. The procedure is applied first to a test case dataset and then to the 19 June 1986 study day from the Cooperative Huntsville Meteorological Experiment (COHMEX). Ground truth data for verifying results from the technique include IWC from National Weather Service and COHMEX radiosondes, the Multispectral Atmospheric Mapping Sensor (MAMS), and a special set of VAS soundings (12 channel) using an independent retrieval method. Results from the test case show reasonable accuracy with the root-mean-square errors as low as ±3.8 mm. On the 19 June case study day IWC analyses depict reasonable gradients and exhibit good spatial and temporal continuity. Furthermore, they provide insight into preferred regions for cumulus cloud and thunderstorm formation. On the average, a mean absolute retrieval error of 2.4 mm (an 8.1% error) and a root-mean-square error of ±2.9 mm are obtained on the case study day. These results compare favorably with those from existing VAS IWC techniques. Overall, the findings indicate that the technique has excellent potential to depict mesoscale moisture variations.
    publisherAmerican Meteorological Society
    titleA Technique for Deriving Column-integrated Water Content Using VAS Split-Window Data
    typeJournal Paper
    journal volume32
    journal issue7
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1993)032<1226:ATFDCI>2.0.CO;2
    journal fristpage1226
    journal lastpage1241
    treeJournal of Applied Meteorology:;1993:;volume( 032 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian