YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurements and Modeling of the Effects of Ambient Meteorology on Nocturnal Drainage Flows

    Source: Journal of Applied Meteorology:;1992:;volume( 031 ):;issue: 009::page 1023
    Author:
    Gudiksen, P. H.
    ,
    Leone, J. M.
    ,
    King, C. W.
    ,
    Ruffieux, D.
    ,
    Neff, W. D.
    DOI: 10.1175/1520-0450(1992)031<1023:MAMOTE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An experimental and modeling investigation of nocturnal drainage flows within the Mesa Creek valley in western Colorado revealed their wind and temperature characteristics and the effects of the ambient meteorology on their development. The valley, located about 30 km east of Grand Junction, is situated on the north slopes of the Grand Mesa. It is surrounded by ridges on three sides with low terrain toward the north. The terrain at the higher elevations is characterized by steep slopes that become shallower at the lower elevations. A network of seven meteorological towers and a monostatic solar collected data within the study area from December 1988 through November 1989. Analysis of the experimental data indicated that shallow drainage flows generated over the many individual slopes at the higher elevations converge at the lower elevations to form deeper flows that join with those generated within adjacent drainage areas. The characteristics of the flows generally deviated from those displayed by idealized slope flows due to both internal circulations within the valley and external influences. During the summer, the depths of the flows were typically a few tens of meters along the upper slopes and about 100 m over the upper part of the lower slopes while during the winter, the depths decreased to about 10 and 60 m, respectively. Their frequency of occurrence was highest during the summer or fall, about 50%, when the synoptic-scale influences were minimal. The flows along the upper slopes were particularly susceptible to influences by the ambient meteorology due to minimal terrain shielding. When the larger-scale ambient flows over the Grand Mesa were greater than about 5 m s?1, the surface cooling along the slopes was unable to develop and maintain the surface temperature inversion needed to generate strong drainage flows. The radiative cooling rates of the sloped surfaces, as characterized by net radiation measurements, were correlated with the downslope wind speeds observed along the upper slopes. Thus, a decrease in the observed net radiation level will produce a corresponding decrease in the downslope wind speed. Since temporal changes in net radiation levels are primarily governed by variations in atmospheric moisture, the effect of increased atmospheric moisture is to retard the development of the drainage flows. In order to place the observations in proper perspective, it was necessary to employ numerical models that account for the physical processes governing the dynamics of the flows. The general features of the wind and temperature characteristics of the valley circulations and the influence of strong ambient winds and atmospheric moisture on the drainage flows over the upper slopes could be accounted for by numerical modeling techniques based on solving the equations of momentum, continuity, and energy coupled with a surface energy budget and a radiation module.
    • Download: (892.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurements and Modeling of the Effects of Ambient Meteorology on Nocturnal Drainage Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147091
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorGudiksen, P. H.
    contributor authorLeone, J. M.
    contributor authorKing, C. W.
    contributor authorRuffieux, D.
    contributor authorNeff, W. D.
    date accessioned2017-06-09T14:04:01Z
    date available2017-06-09T14:04:01Z
    date copyright1992/09/01
    date issued1992
    identifier issn0894-8763
    identifier otherams-11820.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147091
    description abstractAn experimental and modeling investigation of nocturnal drainage flows within the Mesa Creek valley in western Colorado revealed their wind and temperature characteristics and the effects of the ambient meteorology on their development. The valley, located about 30 km east of Grand Junction, is situated on the north slopes of the Grand Mesa. It is surrounded by ridges on three sides with low terrain toward the north. The terrain at the higher elevations is characterized by steep slopes that become shallower at the lower elevations. A network of seven meteorological towers and a monostatic solar collected data within the study area from December 1988 through November 1989. Analysis of the experimental data indicated that shallow drainage flows generated over the many individual slopes at the higher elevations converge at the lower elevations to form deeper flows that join with those generated within adjacent drainage areas. The characteristics of the flows generally deviated from those displayed by idealized slope flows due to both internal circulations within the valley and external influences. During the summer, the depths of the flows were typically a few tens of meters along the upper slopes and about 100 m over the upper part of the lower slopes while during the winter, the depths decreased to about 10 and 60 m, respectively. Their frequency of occurrence was highest during the summer or fall, about 50%, when the synoptic-scale influences were minimal. The flows along the upper slopes were particularly susceptible to influences by the ambient meteorology due to minimal terrain shielding. When the larger-scale ambient flows over the Grand Mesa were greater than about 5 m s?1, the surface cooling along the slopes was unable to develop and maintain the surface temperature inversion needed to generate strong drainage flows. The radiative cooling rates of the sloped surfaces, as characterized by net radiation measurements, were correlated with the downslope wind speeds observed along the upper slopes. Thus, a decrease in the observed net radiation level will produce a corresponding decrease in the downslope wind speed. Since temporal changes in net radiation levels are primarily governed by variations in atmospheric moisture, the effect of increased atmospheric moisture is to retard the development of the drainage flows. In order to place the observations in proper perspective, it was necessary to employ numerical models that account for the physical processes governing the dynamics of the flows. The general features of the wind and temperature characteristics of the valley circulations and the influence of strong ambient winds and atmospheric moisture on the drainage flows over the upper slopes could be accounted for by numerical modeling techniques based on solving the equations of momentum, continuity, and energy coupled with a surface energy budget and a radiation module.
    publisherAmerican Meteorological Society
    titleMeasurements and Modeling of the Effects of Ambient Meteorology on Nocturnal Drainage Flows
    typeJournal Paper
    journal volume31
    journal issue9
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1992)031<1023:MAMOTE>2.0.CO;2
    journal fristpage1023
    journal lastpage1032
    treeJournal of Applied Meteorology:;1992:;volume( 031 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian