YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Polar Cloud and Surface Classification Using AVHRR Imagery: An Intercomparison of Methods

    Source: Journal of Applied Meteorology:;1992:;volume( 031 ):;issue: 005::page 405
    Author:
    Welch, R. M.
    ,
    Sengupta, S. K.
    ,
    Goroch, A. K.
    ,
    Rabindra, P.
    ,
    Rangaraj, N.
    ,
    Navar, M. S.
    DOI: 10.1175/1520-0450(1992)031<0405:PCASCU>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Six Advanced Very High-Resolution Radiometer local area coverage (AVHPR LAC) arctic scenes are classified into ten classes. These include water, solid sea ice, broken sea ice, snow-covered mountains, snow-free land, and five cloud types. Three different classifiers are examined: 1) the traditional stepwise discriminant analysis (SDA) method; 2) the feed-forward back-propagation (FFBP) neural network; and 3) the probabilistic neural network (PNN). More than 200 spectral and textural measures are computed. These are reduced to 20 features using sequential forward selection. Theoretical accuracy of the classifiers is determined using the bootstrap approach. Overall accuracy is 85.6%, 87.6%, and 87.0% for the SDA, FFBP, and PNN classifiers, respectively, with standard deviations of approximately 1%. Thin cloud/fog over ice is the class with the lowest accuracy (≈75%) for all of the classifiers. The snow-covered mountains, the cirrus over ice, and the land classes are classified with the highest accuracy (?90%) by all of the classifiers.
    • Download: (1.233Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Polar Cloud and Surface Classification Using AVHRR Imagery: An Intercomparison of Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4147041
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorWelch, R. M.
    contributor authorSengupta, S. K.
    contributor authorGoroch, A. K.
    contributor authorRabindra, P.
    contributor authorRangaraj, N.
    contributor authorNavar, M. S.
    date accessioned2017-06-09T14:03:52Z
    date available2017-06-09T14:03:52Z
    date copyright1992/05/01
    date issued1992
    identifier issn0894-8763
    identifier otherams-11776.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147041
    description abstractSix Advanced Very High-Resolution Radiometer local area coverage (AVHPR LAC) arctic scenes are classified into ten classes. These include water, solid sea ice, broken sea ice, snow-covered mountains, snow-free land, and five cloud types. Three different classifiers are examined: 1) the traditional stepwise discriminant analysis (SDA) method; 2) the feed-forward back-propagation (FFBP) neural network; and 3) the probabilistic neural network (PNN). More than 200 spectral and textural measures are computed. These are reduced to 20 features using sequential forward selection. Theoretical accuracy of the classifiers is determined using the bootstrap approach. Overall accuracy is 85.6%, 87.6%, and 87.0% for the SDA, FFBP, and PNN classifiers, respectively, with standard deviations of approximately 1%. Thin cloud/fog over ice is the class with the lowest accuracy (≈75%) for all of the classifiers. The snow-covered mountains, the cirrus over ice, and the land classes are classified with the highest accuracy (?90%) by all of the classifiers.
    publisherAmerican Meteorological Society
    titlePolar Cloud and Surface Classification Using AVHRR Imagery: An Intercomparison of Methods
    typeJournal Paper
    journal volume31
    journal issue5
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1992)031<0405:PCASCU>2.0.CO;2
    journal fristpage405
    journal lastpage420
    treeJournal of Applied Meteorology:;1992:;volume( 031 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian