YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microphysical and Radiative Characteristics of Convective Clouds during COHMEX

    Source: Journal of Applied Meteorology:;1991:;volume( 030 ):;issue: 001::page 98
    Author:
    Fulton, Richard
    ,
    Heymsfield, Gerald M.
    DOI: 10.1175/1520-0450(1991)030<0098:MARCOC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The use of passive remote microwave radiance measurements above cloud tops for rainrate estimation is complicated by the complex nature of cloud microphysics. The knowledge of the microphysical structure of clouds, specifically the hydrometeor types, shapes, sizes, and their vertical distribution, is important because radiative emission and scattering effects are dependent upon the hydrometeor distribution. This paper has two purposes: first, to document the structure and evolution of two strong thunderstorms in Alabama using radar multiparameter data; and second, to relate the inferred microphysics to the resulting upwelling microwave radiance observed concurrently by high altitude aircraft. These measurements were collected during the COHMEX field program in the summer of 1986. The radar analysis includes a description of the parameters reflectivity Z, differential reflectivity ZDR, linear depolarization ratio LDR, and hail signal HS for two thunderstorm cases on 11 July 1986. The simultaneous aircraft data includes passive microwave brightness temperature (TB) measurements at four frequencies ranging from 18 to 183 GHz as well as visible and infrared data. The remote radar observations reveal the existence of large ice particles within the storms which is likely to have caused the observed low microwave brightness temperatures. By relating the evolution of the radar measureables to the microwave TB's it has been found that knowledge of the storm microphysics and its evolution is important to adequately understand the microwave TB's.
    • Download: (1.987Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microphysical and Radiative Characteristics of Convective Clouds during COHMEX

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4146895
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorFulton, Richard
    contributor authorHeymsfield, Gerald M.
    date accessioned2017-06-09T14:03:23Z
    date available2017-06-09T14:03:23Z
    date copyright1991/01/01
    date issued1991
    identifier issn0894-8763
    identifier otherams-11644.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4146895
    description abstractThe use of passive remote microwave radiance measurements above cloud tops for rainrate estimation is complicated by the complex nature of cloud microphysics. The knowledge of the microphysical structure of clouds, specifically the hydrometeor types, shapes, sizes, and their vertical distribution, is important because radiative emission and scattering effects are dependent upon the hydrometeor distribution. This paper has two purposes: first, to document the structure and evolution of two strong thunderstorms in Alabama using radar multiparameter data; and second, to relate the inferred microphysics to the resulting upwelling microwave radiance observed concurrently by high altitude aircraft. These measurements were collected during the COHMEX field program in the summer of 1986. The radar analysis includes a description of the parameters reflectivity Z, differential reflectivity ZDR, linear depolarization ratio LDR, and hail signal HS for two thunderstorm cases on 11 July 1986. The simultaneous aircraft data includes passive microwave brightness temperature (TB) measurements at four frequencies ranging from 18 to 183 GHz as well as visible and infrared data. The remote radar observations reveal the existence of large ice particles within the storms which is likely to have caused the observed low microwave brightness temperatures. By relating the evolution of the radar measureables to the microwave TB's it has been found that knowledge of the storm microphysics and its evolution is important to adequately understand the microwave TB's.
    publisherAmerican Meteorological Society
    titleMicrophysical and Radiative Characteristics of Convective Clouds during COHMEX
    typeJournal Paper
    journal volume30
    journal issue1
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1991)030<0098:MARCOC>2.0.CO;2
    journal fristpage98
    journal lastpage116
    treeJournal of Applied Meteorology:;1991:;volume( 030 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian