YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate and Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate and Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Testing the Simple Biosphere Model (SiB) Using Point Micrometeorological and Biophysical Data

    Source: Journal of Climate and Applied Meteorology:;1987:;Volume( 026 ):;Issue: 005::page 622
    Author:
    Sellers, P. J.
    ,
    Dorman, J. L.
    DOI: 10.1175/1520-0450(1987)026<0622:TTSBMU>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Simple Biosphere model (SiB) of Sellers et al. (1986) was designed for use within General Circulation Models (GCMs) of the earth's atmosphere. The main objective of SiB is to provide a biophysically realistic description of those processes which control the transfer of radiation, sensible heat, latent heat and momentum between the terrestrial surface and the atmosphere. As a result, SiB is more complex and has a larger input parameter set than most equivalent formulations used in GCMs. Prior to implementing SiB in a GCM, it is essential that its components and its functioning as a whole, be thoroughly tested. Additionally, it is highly desirable that the model's response to errors or uncertainties in the input parameter set be explored. This paper discusses investigations that were directed at addressing then two issues. Micrometeorological and biophysical measurements from surface experiments conducted over arable crops in West Germany and the United States and a forested site in the United Kingdom were used to test the operation of SiB. Observed values of the downward radiative fluxes, wind speed, air temperature and water vapor pressure recorded above the surface were used as the boundary forcing for the SiB model. The predicted partitioning of the absorbed radiation into the sensible and latent heat fluxes compares well with observations and the various subcomponents of the model appear to operate realistically. The sensitivity of the model's energy balance calculations to changes in the various model parameters and the soil moisture initialization is examined. It is estimated that the model will generate uncertainties of the order of ±7% in the calculated net radiation, and up to ±25% in the calculated evapotranspiration rate, with typical values of ±15%.
    • Download: (1.990Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Testing the Simple Biosphere Model (SiB) Using Point Micrometeorological and Biophysical Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4146365
    Collections
    • Journal of Climate and Applied Meteorology

    Show full item record

    contributor authorSellers, P. J.
    contributor authorDorman, J. L.
    date accessioned2017-06-09T14:01:45Z
    date available2017-06-09T14:01:45Z
    date copyright1987/05/01
    date issued1987
    identifier issn0733-3021
    identifier otherams-11167.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4146365
    description abstractThe Simple Biosphere model (SiB) of Sellers et al. (1986) was designed for use within General Circulation Models (GCMs) of the earth's atmosphere. The main objective of SiB is to provide a biophysically realistic description of those processes which control the transfer of radiation, sensible heat, latent heat and momentum between the terrestrial surface and the atmosphere. As a result, SiB is more complex and has a larger input parameter set than most equivalent formulations used in GCMs. Prior to implementing SiB in a GCM, it is essential that its components and its functioning as a whole, be thoroughly tested. Additionally, it is highly desirable that the model's response to errors or uncertainties in the input parameter set be explored. This paper discusses investigations that were directed at addressing then two issues. Micrometeorological and biophysical measurements from surface experiments conducted over arable crops in West Germany and the United States and a forested site in the United Kingdom were used to test the operation of SiB. Observed values of the downward radiative fluxes, wind speed, air temperature and water vapor pressure recorded above the surface were used as the boundary forcing for the SiB model. The predicted partitioning of the absorbed radiation into the sensible and latent heat fluxes compares well with observations and the various subcomponents of the model appear to operate realistically. The sensitivity of the model's energy balance calculations to changes in the various model parameters and the soil moisture initialization is examined. It is estimated that the model will generate uncertainties of the order of ±7% in the calculated net radiation, and up to ±25% in the calculated evapotranspiration rate, with typical values of ±15%.
    publisherAmerican Meteorological Society
    titleTesting the Simple Biosphere Model (SiB) Using Point Micrometeorological and Biophysical Data
    typeJournal Paper
    journal volume26
    journal issue5
    journal titleJournal of Climate and Applied Meteorology
    identifier doi10.1175/1520-0450(1987)026<0622:TTSBMU>2.0.CO;2
    journal fristpage622
    journal lastpage651
    treeJournal of Climate and Applied Meteorology:;1987:;Volume( 026 ):;Issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian