YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate and Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate and Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamical Model Simulation of the Morning Boundary Layer Development in Deep Mountain Valleys

    Source: Journal of Climate and Applied Meteorology:;1983:;volume( 022 ):;issue: 003::page 341
    Author:
    Bader, David C.
    ,
    Mckee, Thomas B.
    DOI: 10.1175/1520-0450(1983)022<0341:DMSOTM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A dry, two-dimensional version of the Colorado State University Multi-dimensional Cloud/Mesoscale Model was used to study the cross-valley evolution of the wind and temperature structures in an idealized east-west oriented mountain valley. Two simulations were performed, one in which the valley was heated symmetrically and a second in which a mid-latitude heating distribution was imposed. Both runs were initiated identically with a stable layer filling the valley to ridgetop and a neutral layer above the ridge. A specified sinusoidal surface potential temperature flux function approximating the diurnal cycle forced the model at the lower boundary. The results of the two simulations were remarkably similar. The model realistically reproduced the gross features found in actual valleys in both structure and timing. The simulated inversions were destroyed three and one-half hours after sunrise as a result of a neutral layer growing up from the surface meeting a descending inversion top. Slope winds with speeds of 3?5 m s?1 developed over both sidewalls two and one-half hours after sunrise. Both cases revealed the development of strongly stable pockets of air over the sidewalls which form when cold air advected upslope loses its buoyancy at higher elevations. These stable pockets temporarily block the slope flow and force transient cross-valley circulations to form which act to destabilize the valley boundary layer. Cross-valley mixing and gravity waves rapidly redistribute heat across the valley to prevent large potential temperature gradients from forming. As a result, oven large differences in heating rates between opposing sidewalls do not result in significant cross-valley potential temperature differences. Organized cross-valley circulations and eddy motions enhance lateral mixing in the stable layer as well.
    • Download: (1.023Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamical Model Simulation of the Morning Boundary Layer Development in Deep Mountain Valleys

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4145569
    Collections
    • Journal of Climate and Applied Meteorology

    Show full item record

    contributor authorBader, David C.
    contributor authorMckee, Thomas B.
    date accessioned2017-06-09T13:59:19Z
    date available2017-06-09T13:59:19Z
    date copyright1983/03/01
    date issued1983
    identifier issn0733-3021
    identifier otherams-10450.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4145569
    description abstractA dry, two-dimensional version of the Colorado State University Multi-dimensional Cloud/Mesoscale Model was used to study the cross-valley evolution of the wind and temperature structures in an idealized east-west oriented mountain valley. Two simulations were performed, one in which the valley was heated symmetrically and a second in which a mid-latitude heating distribution was imposed. Both runs were initiated identically with a stable layer filling the valley to ridgetop and a neutral layer above the ridge. A specified sinusoidal surface potential temperature flux function approximating the diurnal cycle forced the model at the lower boundary. The results of the two simulations were remarkably similar. The model realistically reproduced the gross features found in actual valleys in both structure and timing. The simulated inversions were destroyed three and one-half hours after sunrise as a result of a neutral layer growing up from the surface meeting a descending inversion top. Slope winds with speeds of 3?5 m s?1 developed over both sidewalls two and one-half hours after sunrise. Both cases revealed the development of strongly stable pockets of air over the sidewalls which form when cold air advected upslope loses its buoyancy at higher elevations. These stable pockets temporarily block the slope flow and force transient cross-valley circulations to form which act to destabilize the valley boundary layer. Cross-valley mixing and gravity waves rapidly redistribute heat across the valley to prevent large potential temperature gradients from forming. As a result, oven large differences in heating rates between opposing sidewalls do not result in significant cross-valley potential temperature differences. Organized cross-valley circulations and eddy motions enhance lateral mixing in the stable layer as well.
    publisherAmerican Meteorological Society
    titleDynamical Model Simulation of the Morning Boundary Layer Development in Deep Mountain Valleys
    typeJournal Paper
    journal volume22
    journal issue3
    journal titleJournal of Climate and Applied Meteorology
    identifier doi10.1175/1520-0450(1983)022<0341:DMSOTM>2.0.CO;2
    journal fristpage341
    journal lastpage351
    treeJournal of Climate and Applied Meteorology:;1983:;volume( 022 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian