YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model Studies of the Beam-Filling Error for Rain-Rate Retrieval with Microwave Radiometers

    Source: Journal of Atmospheric and Oceanic Technology:;1995:;volume( 012 ):;issue: 002::page 268
    Author:
    Ha, Eunho
    ,
    North, Gerald R.
    DOI: 10.1175/1520-0426(1995)012<0268:MSOTBF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Low-frequency (<20 GHz) single-channel microwave retrievals of rain rate encounter the problem of beam-filling error. This error stems from the fact that the relationship between microwave brightness temperature and rain rate is nonlinear, coupled with the fact that the field of view is large or comparable to important sales of variability of the rain field. This means that one may not simply insert the area average of the brightness temperature into the formula for rain rate without incurring both bias and random error. The statistical heterogeneity of the rain-rate field in the footprint of the instrument is key to determining the nature of these errors. This paper makes use of a series of random rain-rate fields to study the size of the bias and random error associated with beam filling. A number of examples are analyzed in detail: the binomially distributed field, the gamma, the Gaussian, the mixed gamma, the lognormal. and the mixed lognormal (?mixed? here means there is a finite probability of no rain rate at a point of space-time). Of particular interest are the applicability of a simple error formula due to Chiu and collaborators and a formula that might hold in the large field of view limit. It is found that the simple formula holds for Gaussian rain-rate fields but begins to fail for highly skewed fields such as the mixed lognormal. While not conclusively demonstrated here, it is suggested that the notion of climatologically adjusting the retrievals to remove the beam-filling bias is a reasonable proposition.
    • Download: (855.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model Studies of the Beam-Filling Error for Rain-Rate Retrieval with Microwave Radiometers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4145335
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorHa, Eunho
    contributor authorNorth, Gerald R.
    date accessioned2017-06-09T13:58:41Z
    date available2017-06-09T13:58:41Z
    date copyright1995/04/01
    date issued1995
    identifier issn0739-0572
    identifier otherams-1024.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4145335
    description abstractLow-frequency (<20 GHz) single-channel microwave retrievals of rain rate encounter the problem of beam-filling error. This error stems from the fact that the relationship between microwave brightness temperature and rain rate is nonlinear, coupled with the fact that the field of view is large or comparable to important sales of variability of the rain field. This means that one may not simply insert the area average of the brightness temperature into the formula for rain rate without incurring both bias and random error. The statistical heterogeneity of the rain-rate field in the footprint of the instrument is key to determining the nature of these errors. This paper makes use of a series of random rain-rate fields to study the size of the bias and random error associated with beam filling. A number of examples are analyzed in detail: the binomially distributed field, the gamma, the Gaussian, the mixed gamma, the lognormal. and the mixed lognormal (?mixed? here means there is a finite probability of no rain rate at a point of space-time). Of particular interest are the applicability of a simple error formula due to Chiu and collaborators and a formula that might hold in the large field of view limit. It is found that the simple formula holds for Gaussian rain-rate fields but begins to fail for highly skewed fields such as the mixed lognormal. While not conclusively demonstrated here, it is suggested that the notion of climatologically adjusting the retrievals to remove the beam-filling bias is a reasonable proposition.
    publisherAmerican Meteorological Society
    titleModel Studies of the Beam-Filling Error for Rain-Rate Retrieval with Microwave Radiometers
    typeJournal Paper
    journal volume12
    journal issue2
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1995)012<0268:MSOTBF>2.0.CO;2
    journal fristpage268
    journal lastpage281
    treeJournal of Atmospheric and Oceanic Technology:;1995:;volume( 012 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian