YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Topex/Poseidon Data to Enhance ERS-1 Data

    Source: Journal of Atmospheric and Oceanic Technology:;1994:;volume( 012 ):;issue: 001::page 161
    Author:
    Le Traon, P. Y.
    ,
    Gaspar, P.
    ,
    Bouyssel, F.
    ,
    Makhmara, H.
    DOI: 10.1175/1520-0426(1995)012<0161:UTDTED>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This paper presents a relatively straightforward method for efficiently reducing the ERS-1 orbit error using Topex/Postidon data. The method is based on a global minimization of Topex/Poscidon-ERS-1 (TP-E) dual crossover differences. The TP-E crossover differences give an estimate of the ERS-1 radial orbit error almost directly, leading to a geometric estimation of orbit error. Smoothing cubic-spline functions are then used to obtain a continuous estimation of the orbit error over time. The splines can also be adjusted to minimize the ERS-1-ERS-1 (E-E) crossover differences. This allows a better estimation of the orbit error, especially poleward of 66° where no TP-E crossovers are available. The method was successfully applied to the final TP and ERS-1 datasets [i.e., the TP GDRs (geophysical data records) and the ERS-1 OPRs (ocean products)]. The authors used one full 35-day ERS-1 cycle and five TP cycles concurrent with ERS-1 data. Only crossovers with time differences lm than 5 days are used in the adjustment so that most of the large-scale oceanic signal is preserved. Just by using dual TP-E crossovers, E-E crossover differences are reduced from 18 to 10 cm. Also using the single E-E crossovers in the adjustment significantly improves the solution poleward of 66°. The E-E crossover differences are thus globally reduced to only 8 cm. The method was also shown to be almost insensitive to the initial ERS-1 orbit error. The results demonstrate that the orbit of ERS-1 can be determined with an accuracy similar to TP. The method also provides a precise, homogeneous ERS-1-TP dataset. This dataset can be used to map sea level variation or mean sea surface with high accuracy and excellent resolution. More generally, this study shows that when two satellites are flying simultaneously, the more precise one can be used as a reference. This is of great importance for future altimetric missions.
    • Download: (1.085Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Topex/Poseidon Data to Enhance ERS-1 Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4145235
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLe Traon, P. Y.
    contributor authorGaspar, P.
    contributor authorBouyssel, F.
    contributor authorMakhmara, H.
    date accessioned2017-06-09T13:58:26Z
    date available2017-06-09T13:58:26Z
    date copyright1995/02/01
    date issued1994
    identifier issn0739-0572
    identifier otherams-1015.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4145235
    description abstractThis paper presents a relatively straightforward method for efficiently reducing the ERS-1 orbit error using Topex/Postidon data. The method is based on a global minimization of Topex/Poscidon-ERS-1 (TP-E) dual crossover differences. The TP-E crossover differences give an estimate of the ERS-1 radial orbit error almost directly, leading to a geometric estimation of orbit error. Smoothing cubic-spline functions are then used to obtain a continuous estimation of the orbit error over time. The splines can also be adjusted to minimize the ERS-1-ERS-1 (E-E) crossover differences. This allows a better estimation of the orbit error, especially poleward of 66° where no TP-E crossovers are available. The method was successfully applied to the final TP and ERS-1 datasets [i.e., the TP GDRs (geophysical data records) and the ERS-1 OPRs (ocean products)]. The authors used one full 35-day ERS-1 cycle and five TP cycles concurrent with ERS-1 data. Only crossovers with time differences lm than 5 days are used in the adjustment so that most of the large-scale oceanic signal is preserved. Just by using dual TP-E crossovers, E-E crossover differences are reduced from 18 to 10 cm. Also using the single E-E crossovers in the adjustment significantly improves the solution poleward of 66°. The E-E crossover differences are thus globally reduced to only 8 cm. The method was also shown to be almost insensitive to the initial ERS-1 orbit error. The results demonstrate that the orbit of ERS-1 can be determined with an accuracy similar to TP. The method also provides a precise, homogeneous ERS-1-TP dataset. This dataset can be used to map sea level variation or mean sea surface with high accuracy and excellent resolution. More generally, this study shows that when two satellites are flying simultaneously, the more precise one can be used as a reference. This is of great importance for future altimetric missions.
    publisherAmerican Meteorological Society
    titleUsing Topex/Poseidon Data to Enhance ERS-1 Data
    typeJournal Paper
    journal volume12
    journal issue1
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1995)012<0161:UTDTED>2.0.CO;2
    journal fristpage161
    journal lastpage170
    treeJournal of Atmospheric and Oceanic Technology:;1994:;volume( 012 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian