YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Kinematic Undertow Model with Logarithmic Boundary Layer

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;1997:;Volume ( 123 ):;issue: 006
    Author:
    Daniel T. Cox
    ,
    Nobuhisa Kobayashi
    DOI: 10.1061/(ASCE)0733-950X(1997)123:6(354)
    Publisher: American Society of Civil Engineers
    Abstract: A new kinematic undertow profile model is developed to relate the mean horizontal velocity, bottom shear stress, and boundary layer thickness in a simple but general manner. The model combines a logarithmic profile in the bottom boundary layer with a parabolic profile in the interior layer. Use of a logarithmic profile is justified using our laboratory measurements for regular waves spilling on a rough, impermeable slope. Two forms of the model are presented, each with one calibration coefficient associated with the mean bottom shear stress. By adjusting the calibration coefficient at each measuring line, the model is shown to be capable of predicting the measured undertow profiles both inside and outside the surf zone for our rough slope case and for smooth slope cases from the literature. The model does not predict the overshoot in the bottom boundary layer for the rough slope case outside the surf zone. The predicted velocity profile for the smooth slope case in the bottom boundary could not be verified due to a lack of data. The predicted boundary layer thickness agrees with the measurements for the rough slope case and appears to be reasonable for the smooth slope cases. The model predicts the shear velocity in the transition region and inner surf zone reasonably well for the rough slope case, and it underpredicts the shear velocity outside the surf zone. This model is shown to be simple and versatile, but it will need further validation using irregular wave data and varying bottom geometry before it can be used in practical applications.
    • Download: (1.102Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Kinematic Undertow Model with Logarithmic Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/41222
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorDaniel T. Cox
    contributor authorNobuhisa Kobayashi
    date accessioned2017-05-08T21:10:04Z
    date available2017-05-08T21:10:04Z
    date copyrightNovember 1997
    date issued1997
    identifier other%28asce%290733-950x%281997%29123%3A6%28354%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/41222
    description abstractA new kinematic undertow profile model is developed to relate the mean horizontal velocity, bottom shear stress, and boundary layer thickness in a simple but general manner. The model combines a logarithmic profile in the bottom boundary layer with a parabolic profile in the interior layer. Use of a logarithmic profile is justified using our laboratory measurements for regular waves spilling on a rough, impermeable slope. Two forms of the model are presented, each with one calibration coefficient associated with the mean bottom shear stress. By adjusting the calibration coefficient at each measuring line, the model is shown to be capable of predicting the measured undertow profiles both inside and outside the surf zone for our rough slope case and for smooth slope cases from the literature. The model does not predict the overshoot in the bottom boundary layer for the rough slope case outside the surf zone. The predicted velocity profile for the smooth slope case in the bottom boundary could not be verified due to a lack of data. The predicted boundary layer thickness agrees with the measurements for the rough slope case and appears to be reasonable for the smooth slope cases. The model predicts the shear velocity in the transition region and inner surf zone reasonably well for the rough slope case, and it underpredicts the shear velocity outside the surf zone. This model is shown to be simple and versatile, but it will need further validation using irregular wave data and varying bottom geometry before it can be used in practical applications.
    publisherAmerican Society of Civil Engineers
    titleKinematic Undertow Model with Logarithmic Boundary Layer
    typeJournal Paper
    journal volume123
    journal issue6
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)0733-950X(1997)123:6(354)
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;1997:;Volume ( 123 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian