contributor author | Ge Wei | |
contributor author | James T. Kirby | |
date accessioned | 2017-05-08T21:09:54Z | |
date available | 2017-05-08T21:09:54Z | |
date copyright | September 1995 | |
date issued | 1995 | |
identifier other | %28asce%290733-950x%281995%29121%3A5%28251%29.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/41109 | |
description abstract | The extended Boussinesq equations derived by Nwogu (1993) significantly improve the linear dispersive properties of long-wave models in intermediate water depths, making it suitable to simulate wave propagation from relatively deep to shallow water. In this study, a numerical code based on Nwogu's equations is developed. The model uses a fourth-order predictor-corrector method to advance in time, and discretizes first-order spatial derivatives to fourth-order accuracy, thus reducing all truncation errors to a level smaller than the dispersive terms retained by the model. The basic numerical scheme and associated boundary conditions are described. The model is applied to several examples of wave propagation in variable depth, and computed solutions are compared with experimental data. These initial results indicate that the model is capable of simulating wave transformation from relatively deep water to shallow water, giving accurate predictions of the height and shape of shoaled waves in both regular and irregular wave experiments. | |
publisher | American Society of Civil Engineers | |
title | Time-Dependent Numerical Code for Extended Boussinesq Equations | |
type | Journal Paper | |
journal volume | 121 | |
journal issue | 5 | |
journal title | Journal of Waterway, Port, Coastal, and Ocean Engineering | |
identifier doi | 10.1061/(ASCE)0733-950X(1995)121:5(251) | |
tree | Journal of Waterway, Port, Coastal, and Ocean Engineering:;1995:;Volume ( 121 ):;issue: 005 | |
contenttype | Fulltext | |