YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Climate-Based Estimation of Hydrologic Inflow into Lake Okeechobee, Florida

    Source: Journal of Water Resources Planning and Management:;2005:;Volume ( 131 ):;issue: 005
    Author:
    Fernando Miralles-Wilhelm
    ,
    Paul J. Trimble
    ,
    Guillermo Podestá
    ,
    David Letson
    ,
    Kenneth Broad
    DOI: 10.1061/(ASCE)0733-9496(2005)131:5(394)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a comparative evaluation of methods for climate-based estimation of the net inflow rate into Lake Okeechobee, Fla. The estimated net inflow rate is used by the South Florida Water Management District (SFWMD) to support the management and operations of the Lake Okeechobee hydrologic system. The first method evaluated in this paper (Croley) uses rainfall outlooks provided by the National Oceanic and Atmospheric Administration’s Climate Prediction Center (CPC) to calculate a weighed average of historical inflow values for each month. The second method evaluated in this paper (SFWMD Empirical) uses a linear regression on statistics of historical data to predict the net inflow rate. These two methods were developed and have been used operationally by the SFWMD since 2000. Three new methods are presented and comparatively evaluated to gauge their ability in estimating net inflow rates. The first two of these methods are based on CPC issued forecasts in decile probability density format. The remaining method is based on a subsampling technique for “peer” wet∕dry years in the historical record and is found to yield better results in a retrospective analysis. For extreme climatic events on the historical record, CPC rainfall outlooks are found not to yield a large enough shift in probabilities for forecasts to match observed net inflow rates; this is especially noticeable during El Niño Southern Oscillation events. Recommendations are made for potential improvements to climate-based net inflow rate estimation methods, particularly in regard to their ability to reproduce observed results for net inflow into Lake Okeechobee in the presence of an extreme climatic event, as well as over an extended climatological period.
    • Download: (335.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Climate-Based Estimation of Hydrologic Inflow into Lake Okeechobee, Florida

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/39971
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorFernando Miralles-Wilhelm
    contributor authorPaul J. Trimble
    contributor authorGuillermo Podestá
    contributor authorDavid Letson
    contributor authorKenneth Broad
    date accessioned2017-05-08T21:08:01Z
    date available2017-05-08T21:08:01Z
    date copyrightSeptember 2005
    date issued2005
    identifier other%28asce%290733-9496%282005%29131%3A5%28394%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/39971
    description abstractThis paper presents a comparative evaluation of methods for climate-based estimation of the net inflow rate into Lake Okeechobee, Fla. The estimated net inflow rate is used by the South Florida Water Management District (SFWMD) to support the management and operations of the Lake Okeechobee hydrologic system. The first method evaluated in this paper (Croley) uses rainfall outlooks provided by the National Oceanic and Atmospheric Administration’s Climate Prediction Center (CPC) to calculate a weighed average of historical inflow values for each month. The second method evaluated in this paper (SFWMD Empirical) uses a linear regression on statistics of historical data to predict the net inflow rate. These two methods were developed and have been used operationally by the SFWMD since 2000. Three new methods are presented and comparatively evaluated to gauge their ability in estimating net inflow rates. The first two of these methods are based on CPC issued forecasts in decile probability density format. The remaining method is based on a subsampling technique for “peer” wet∕dry years in the historical record and is found to yield better results in a retrospective analysis. For extreme climatic events on the historical record, CPC rainfall outlooks are found not to yield a large enough shift in probabilities for forecasts to match observed net inflow rates; this is especially noticeable during El Niño Southern Oscillation events. Recommendations are made for potential improvements to climate-based net inflow rate estimation methods, particularly in regard to their ability to reproduce observed results for net inflow into Lake Okeechobee in the presence of an extreme climatic event, as well as over an extended climatological period.
    publisherAmerican Society of Civil Engineers
    titleClimate-Based Estimation of Hydrologic Inflow into Lake Okeechobee, Florida
    typeJournal Paper
    journal volume131
    journal issue5
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)0733-9496(2005)131:5(394)
    treeJournal of Water Resources Planning and Management:;2005:;Volume ( 131 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian