YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Genetic Algorithms for Least-Cost Design of Water Distribution Networks

    Source: Journal of Water Resources Planning and Management:;1997:;Volume ( 123 ):;issue: 002
    Author:
    Dragan A. Savic
    ,
    Godfrey A. Walters
    DOI: 10.1061/(ASCE)0733-9496(1997)123:2(67)
    Publisher: American Society of Civil Engineers
    Abstract: The paper describes the development of a computer model GANET that involves the application of an area of evolutionary computing, better known as genetic algorithms, to the problem of least-cost design of water distribution networks. Genetic algorithms represent an efficient search method for nonlinear optimization problems; this method is gaining acceptance among water resources managers/planners. These algorithms share the favorable attributes of Monte Carlo techniques over local optimization methods in that they do not require linearizing assumptions nor the calculation of partial derivatives, and they avoid numerical instabilities associated with matrix inversion. In addition, their sampling is global, rather than local, thus reducing the tendency to become entrapped in local minima and avoiding dependency on a starting point. Genetic algorithms are introduced in their original form followed by different improvements that were found to be necessary for their effective implementation in the optimization of water distribution networks. An example taken from the literature illustrates the approach used for the formulation of the problem. To illustrate the capability of GANET to efficiently identify good designs, three previously published problems have been solved. This led to the discovery of inconsistencies in predictions of network performance caused by different interpretations of the widely adopted Hazen-Williams pipe flow equation in the past studies. As well as being very efficient for network optimization, GANET is also easy to use, having almost the same input requirements as hydraulic simulation models. The only additional data requirements are a few genetic algorithm parameters that take values recommended in the literature. Two network examples, one of a new network design and one of parallel network expansion, illustrate the potential of GANET as a tool for water distribution network planning and management.
    • Download: (1.486Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Genetic Algorithms for Least-Cost Design of Water Distribution Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/39470
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorDragan A. Savic
    contributor authorGodfrey A. Walters
    date accessioned2017-05-08T21:07:19Z
    date available2017-05-08T21:07:19Z
    date copyrightMarch 1997
    date issued1997
    identifier other%28asce%290733-9496%281997%29123%3A2%2867%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/39470
    description abstractThe paper describes the development of a computer model GANET that involves the application of an area of evolutionary computing, better known as genetic algorithms, to the problem of least-cost design of water distribution networks. Genetic algorithms represent an efficient search method for nonlinear optimization problems; this method is gaining acceptance among water resources managers/planners. These algorithms share the favorable attributes of Monte Carlo techniques over local optimization methods in that they do not require linearizing assumptions nor the calculation of partial derivatives, and they avoid numerical instabilities associated with matrix inversion. In addition, their sampling is global, rather than local, thus reducing the tendency to become entrapped in local minima and avoiding dependency on a starting point. Genetic algorithms are introduced in their original form followed by different improvements that were found to be necessary for their effective implementation in the optimization of water distribution networks. An example taken from the literature illustrates the approach used for the formulation of the problem. To illustrate the capability of GANET to efficiently identify good designs, three previously published problems have been solved. This led to the discovery of inconsistencies in predictions of network performance caused by different interpretations of the widely adopted Hazen-Williams pipe flow equation in the past studies. As well as being very efficient for network optimization, GANET is also easy to use, having almost the same input requirements as hydraulic simulation models. The only additional data requirements are a few genetic algorithm parameters that take values recommended in the literature. Two network examples, one of a new network design and one of parallel network expansion, illustrate the potential of GANET as a tool for water distribution network planning and management.
    publisherAmerican Society of Civil Engineers
    titleGenetic Algorithms for Least-Cost Design of Water Distribution Networks
    typeJournal Paper
    journal volume123
    journal issue2
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)0733-9496(1997)123:2(67)
    treeJournal of Water Resources Planning and Management:;1997:;Volume ( 123 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian