YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Effects on Moisture Transport in Asphalt Concrete

    Source: Journal of Transportation Engineering, Part A: Systems:;2007:;Volume ( 133 ):;issue: 007
    Author:
    M. Emin Kutay
    ,
    Ahmet H. Aydilek
    DOI: 10.1061/(ASCE)0733-947X(2007)133:7(406)
    Publisher: American Society of Civil Engineers
    Abstract: Permeability of an asphalt pavement is one of the most important parameters that have a direct influence on its design life. It is an intrinsic property that relates the average fluid velocity to a constant pressure gradient; however, the external pressures on a saturated pavement pore structure are often dynamic due to the repeated tire loading in the field. A dynamic permeability constant, therefore, is a more realistic representation of the response of a pavement pore structure to external stresses. In order to investigate the unsteady (dynamic) fluid flow in asphalt pavements, a three-dimensional fluid flow model was developed using the lattice Boltzmann method. The model was validated using the well-known closed form solution of oscillating flow through a circular tube. Simulations were carried out to calculate the permeabilities of different asphalt specimens exposed to pulsatile pressures as well as the pore pressures and shear stresses at the solid–water interfaces. The results indicated that the dynamic permeability of an asphalt pore structure collapses on a single curve for a given frequency, confirming a universal behavior. Dynamic effects were generally limited to near the surface of the specimens analyzed, and the pore pressures and velocities varied nonlinearly along the depth due to the heterogeneous nature of the asphalt specimens. The results are encouraging yet should be considered preliminary as they are based on stone matrix asphalt specimens and one type of pulsatile load analyzed.
    • Download: (590.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Effects on Moisture Transport in Asphalt Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/38001
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorM. Emin Kutay
    contributor authorAhmet H. Aydilek
    date accessioned2017-05-08T21:05:01Z
    date available2017-05-08T21:05:01Z
    date copyrightJuly 2007
    date issued2007
    identifier other%28asce%290733-947x%282007%29133%3A7%28406%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/38001
    description abstractPermeability of an asphalt pavement is one of the most important parameters that have a direct influence on its design life. It is an intrinsic property that relates the average fluid velocity to a constant pressure gradient; however, the external pressures on a saturated pavement pore structure are often dynamic due to the repeated tire loading in the field. A dynamic permeability constant, therefore, is a more realistic representation of the response of a pavement pore structure to external stresses. In order to investigate the unsteady (dynamic) fluid flow in asphalt pavements, a three-dimensional fluid flow model was developed using the lattice Boltzmann method. The model was validated using the well-known closed form solution of oscillating flow through a circular tube. Simulations were carried out to calculate the permeabilities of different asphalt specimens exposed to pulsatile pressures as well as the pore pressures and shear stresses at the solid–water interfaces. The results indicated that the dynamic permeability of an asphalt pore structure collapses on a single curve for a given frequency, confirming a universal behavior. Dynamic effects were generally limited to near the surface of the specimens analyzed, and the pore pressures and velocities varied nonlinearly along the depth due to the heterogeneous nature of the asphalt specimens. The results are encouraging yet should be considered preliminary as they are based on stone matrix asphalt specimens and one type of pulsatile load analyzed.
    publisherAmerican Society of Civil Engineers
    titleDynamic Effects on Moisture Transport in Asphalt Concrete
    typeJournal Paper
    journal volume133
    journal issue7
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)0733-947X(2007)133:7(406)
    treeJournal of Transportation Engineering, Part A: Systems:;2007:;Volume ( 133 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian