YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Difference between In Situ Flexible Pavement Measured and Calculated Stresses and Strains

    Source: Journal of Transportation Engineering, Part A: Systems:;2006:;Volume ( 132 ):;issue: 007
    Author:
    Amara Loulizi
    ,
    Imad L. Al-Qadi
    ,
    Mostafa Elseifi
    DOI: 10.1061/(ASCE)0733-947X(2006)132:7(574)
    Publisher: American Society of Civil Engineers
    Abstract: One of the 12 instrumented sections of the Virginia Smart Road was used to compare measured vertical compressive stress and measured transverse horizontal strain under the hot-mix asphalt (HMA) layer induced by a 25.8 kN (5.8 kip) single tire and a 39.5 kN (8.9 kip) set of dual tires to those calculated using layered linear elastic theory. The pavement section is composed of 38 mm (1.5 in.) HMA wearing surface, 150 mm (6 in.) of HMA base mix, 75 mm (3 in.) of asphalt stabilized open graded drainage layer, 150 mm (6 in.) of cement stabilized aggregate layer, and 175 mm (7 in.) of unbound aggregate base. The subgrade is a fill material composed mainly of rocks. Measured stresses were obtained using pressure cells embedded in the pavement during construction. Horizontal transverse strain was measured using H-type strain gauges that were also embedded during construction. Temperature in the pavement layers was measured using embedded T-type thermocouples. Theoretically calculated stresses and strains were obtained using software based on the layered-elastic theory (Kenpave, Bisar 3.0, Elsym5, and Everstress 5.0). In addition, two finite-element approaches were used. Results indicated that the layered elastic theory overestimates pavement responses at low and intermediate temperatures, but significantly underestimates the pavement responses to vehicular loading at high temperatures.
    • Download: (591.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Difference between In Situ Flexible Pavement Measured and Calculated Stresses and Strains

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/37899
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorAmara Loulizi
    contributor authorImad L. Al-Qadi
    contributor authorMostafa Elseifi
    date accessioned2017-05-08T21:04:52Z
    date available2017-05-08T21:04:52Z
    date copyrightJuly 2006
    date issued2006
    identifier other%28asce%290733-947x%282006%29132%3A7%28574%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/37899
    description abstractOne of the 12 instrumented sections of the Virginia Smart Road was used to compare measured vertical compressive stress and measured transverse horizontal strain under the hot-mix asphalt (HMA) layer induced by a 25.8 kN (5.8 kip) single tire and a 39.5 kN (8.9 kip) set of dual tires to those calculated using layered linear elastic theory. The pavement section is composed of 38 mm (1.5 in.) HMA wearing surface, 150 mm (6 in.) of HMA base mix, 75 mm (3 in.) of asphalt stabilized open graded drainage layer, 150 mm (6 in.) of cement stabilized aggregate layer, and 175 mm (7 in.) of unbound aggregate base. The subgrade is a fill material composed mainly of rocks. Measured stresses were obtained using pressure cells embedded in the pavement during construction. Horizontal transverse strain was measured using H-type strain gauges that were also embedded during construction. Temperature in the pavement layers was measured using embedded T-type thermocouples. Theoretically calculated stresses and strains were obtained using software based on the layered-elastic theory (Kenpave, Bisar 3.0, Elsym5, and Everstress 5.0). In addition, two finite-element approaches were used. Results indicated that the layered elastic theory overestimates pavement responses at low and intermediate temperatures, but significantly underestimates the pavement responses to vehicular loading at high temperatures.
    publisherAmerican Society of Civil Engineers
    titleDifference between In Situ Flexible Pavement Measured and Calculated Stresses and Strains
    typeJournal Paper
    journal volume132
    journal issue7
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)0733-947X(2006)132:7(574)
    treeJournal of Transportation Engineering, Part A: Systems:;2006:;Volume ( 132 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian