YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transverse Pavement Grooving against Hydroplaning. II: Design

    Source: Journal of Transportation Engineering, Part A: Systems:;2006:;Volume ( 132 ):;issue: 006
    Author:
    T. F. Fwa
    ,
    G. P. Ong
    DOI: 10.1061/(ASCE)0733-947X(2006)132:6(449)
    Publisher: American Society of Civil Engineers
    Abstract: This paper analyzes the effect of groove dimensions (width, depth, and spacing) of transversely grooved pavement surface on hydroplaning using a three-dimensional finite-volume hydroplaning simulation model. Groove widths varying from 2 to 10 mm, groove depths from 1 to 10 mm, and center-to-center spacings from 5 to 25 mm are examined. The effectiveness of a pavement groove design against hydroplaning can be assessed by its ability to raise the hydroplaning speed, which is the vehicle speed at which hydroplaning occurs. It is found that the hydroplaning speed can be raised by increasing the groove depth and width, and decreasing the groove spacing, thereby reducing the risk of hydroplaning occurrence. Among the three groove dimensions (i.e., width, depth, and spacing), changes in groove width is found to have the most significant effect, followed by groove spacing and groove depth. This paper next proposes an analytical procedure for the design of transverse pavement grooving using the simulation model based on the concept of risks of hydroplaning. An illustration of the proposed design procedure is presented in this paper, using a wet-weather freeway vehicle speed distribution, to determine the transverse pavement grooving designs for different risk levels from 0.001% upward. The design concept also allows one to assess the hydroplaning risk level of an existing transversely grooved pavement surface or a proposed groove design, with known wet-weather traffic speed distribution and water film thickness.
    • Download: (449.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transverse Pavement Grooving against Hydroplaning. II: Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/37882
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorT. F. Fwa
    contributor authorG. P. Ong
    date accessioned2017-05-08T21:04:50Z
    date available2017-05-08T21:04:50Z
    date copyrightJune 2006
    date issued2006
    identifier other%28asce%290733-947x%282006%29132%3A6%28449%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/37882
    description abstractThis paper analyzes the effect of groove dimensions (width, depth, and spacing) of transversely grooved pavement surface on hydroplaning using a three-dimensional finite-volume hydroplaning simulation model. Groove widths varying from 2 to 10 mm, groove depths from 1 to 10 mm, and center-to-center spacings from 5 to 25 mm are examined. The effectiveness of a pavement groove design against hydroplaning can be assessed by its ability to raise the hydroplaning speed, which is the vehicle speed at which hydroplaning occurs. It is found that the hydroplaning speed can be raised by increasing the groove depth and width, and decreasing the groove spacing, thereby reducing the risk of hydroplaning occurrence. Among the three groove dimensions (i.e., width, depth, and spacing), changes in groove width is found to have the most significant effect, followed by groove spacing and groove depth. This paper next proposes an analytical procedure for the design of transverse pavement grooving using the simulation model based on the concept of risks of hydroplaning. An illustration of the proposed design procedure is presented in this paper, using a wet-weather freeway vehicle speed distribution, to determine the transverse pavement grooving designs for different risk levels from 0.001% upward. The design concept also allows one to assess the hydroplaning risk level of an existing transversely grooved pavement surface or a proposed groove design, with known wet-weather traffic speed distribution and water film thickness.
    publisherAmerican Society of Civil Engineers
    titleTransverse Pavement Grooving against Hydroplaning. II: Design
    typeJournal Paper
    journal volume132
    journal issue6
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)0733-947X(2006)132:6(449)
    treeJournal of Transportation Engineering, Part A: Systems:;2006:;Volume ( 132 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian