YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Incorporating Uncertainty and Multiple Objectives in Real-Time Route Selection

    Source: Journal of Transportation Engineering, Part A: Systems:;2001:;Volume ( 127 ):;issue: 006
    Author:
    L. R. Rilett
    ,
    D. Park
    DOI: 10.1061/(ASCE)0733-947X(2001)127:6(531)
    Publisher: American Society of Civil Engineers
    Abstract: There is a requirement in real-time, routing information systems to identify the “optimal” route based on the multiple objectives and the individual decision-making rules of the users. While a number of utility theory-based techniques have been developed to accomplish this goal, there are a number of shortcomings regarding implementation. These problems, in particular, are: (1) obtaining a mathematical representation of the driver's utility function for each trip type is difficult in practice; (2) the drivers' utility function is a function of the choice set and is difficult to calibrate prior to the identification of the choice set (i.e., it is context-dependent); and (3) identifying the optimal path using a realistic multiple attribute nonlinear utility function is a nondeterministic polynomial time hard problem. Consequently, a heuristic two-stage strategy that identifies multiple reasonable routes and then selects the “near-optimal” path may be an effective and practical alternative. The second step of this proposed strategy is the focus of this paper. A fuzzy logic-based multiple objective route choice model (or decision support system) is developed in order to evaluate the alternative routes identified in the first step. Fuzzy logic is used to take into account crisp values, fuzzy numbers, and linguistic variables that are common phenomena in a real-time vehicle routing environment. The routes and the route attributes are identified and a posterior utility function is developed by combining the prior utility function with a context-dependent utility function that is derived from an entropy model. The proposed strategy is illustrated using Intelligent Transportation System (ITS) data from Houston, Texas, and tested on a traffic network from Austin, Texas, under various traffic conditions. When multiple attributes were considered, an alternative path to the fastest path was found to be the “optimal” path for a significant number of O-D pairs, and this was likely to occur as the level of congestion and the O-D distance increased.
    • Download: (129.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Incorporating Uncertainty and Multiple Objectives in Real-Time Route Selection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/37387
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorL. R. Rilett
    contributor authorD. Park
    date accessioned2017-05-08T21:04:06Z
    date available2017-05-08T21:04:06Z
    date copyrightDecember 2001
    date issued2001
    identifier other%28asce%290733-947x%282001%29127%3A6%28531%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/37387
    description abstractThere is a requirement in real-time, routing information systems to identify the “optimal” route based on the multiple objectives and the individual decision-making rules of the users. While a number of utility theory-based techniques have been developed to accomplish this goal, there are a number of shortcomings regarding implementation. These problems, in particular, are: (1) obtaining a mathematical representation of the driver's utility function for each trip type is difficult in practice; (2) the drivers' utility function is a function of the choice set and is difficult to calibrate prior to the identification of the choice set (i.e., it is context-dependent); and (3) identifying the optimal path using a realistic multiple attribute nonlinear utility function is a nondeterministic polynomial time hard problem. Consequently, a heuristic two-stage strategy that identifies multiple reasonable routes and then selects the “near-optimal” path may be an effective and practical alternative. The second step of this proposed strategy is the focus of this paper. A fuzzy logic-based multiple objective route choice model (or decision support system) is developed in order to evaluate the alternative routes identified in the first step. Fuzzy logic is used to take into account crisp values, fuzzy numbers, and linguistic variables that are common phenomena in a real-time vehicle routing environment. The routes and the route attributes are identified and a posterior utility function is developed by combining the prior utility function with a context-dependent utility function that is derived from an entropy model. The proposed strategy is illustrated using Intelligent Transportation System (ITS) data from Houston, Texas, and tested on a traffic network from Austin, Texas, under various traffic conditions. When multiple attributes were considered, an alternative path to the fastest path was found to be the “optimal” path for a significant number of O-D pairs, and this was likely to occur as the level of congestion and the O-D distance increased.
    publisherAmerican Society of Civil Engineers
    titleIncorporating Uncertainty and Multiple Objectives in Real-Time Route Selection
    typeJournal Paper
    journal volume127
    journal issue6
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)0733-947X(2001)127:6(531)
    treeJournal of Transportation Engineering, Part A: Systems:;2001:;Volume ( 127 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian