YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Recursive Prediction of Traffic Conditions with Neural Network Models

    Source: Journal of Transportation Engineering, Part A: Systems:;2000:;Volume ( 126 ):;issue: 006
    Author:
    H. M. Zhang
    DOI: 10.1061/(ASCE)0733-947X(2000)126:6(472)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a recursive traffic flow prediction algorithm using artificial neural networks. The system prediction model is specified based on the understanding of how disturbances in traffic flow are propagated, and the order of the model is determined by correlation analysis. The parameters of the model, on the other hand, can be obtained through nonlinear optimization. Preliminary studies show that this approach can yield reasonably accurate results.
    • Download: (236.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Recursive Prediction of Traffic Conditions with Neural Network Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/37301
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorH. M. Zhang
    date accessioned2017-05-08T21:03:58Z
    date available2017-05-08T21:03:58Z
    date copyrightDecember 2000
    date issued2000
    identifier other%28asce%290733-947x%282000%29126%3A6%28472%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/37301
    description abstractThis paper presents a recursive traffic flow prediction algorithm using artificial neural networks. The system prediction model is specified based on the understanding of how disturbances in traffic flow are propagated, and the order of the model is determined by correlation analysis. The parameters of the model, on the other hand, can be obtained through nonlinear optimization. Preliminary studies show that this approach can yield reasonably accurate results.
    publisherAmerican Society of Civil Engineers
    titleRecursive Prediction of Traffic Conditions with Neural Network Models
    typeJournal Paper
    journal volume126
    journal issue6
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)0733-947X(2000)126:6(472)
    treeJournal of Transportation Engineering, Part A: Systems:;2000:;Volume ( 126 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian