Show simple item record

contributor authorSherif Ishak
contributor authorHaitham Al-Deek
date accessioned2017-05-08T21:03:47Z
date available2017-05-08T21:03:47Z
date copyrightJuly 1999
date issued1999
identifier other%28asce%290733-947x%281999%29125%3A4%28281%29.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/37190
description abstractAutomatic incident detection on freeways is an essential ingredient for the successful deployment of Intelligent Transportation Systems. Several incident detection algorithms have been developed in the past three decades; however, most of them have not shown the anticipated performance in terms of detection rate and false alarm rate. Recently, the artificial neural networks (ANN) have been introduced to incident detection and shown success over the traditional algorithms. This study explores the application of two neural network models, namely, the Multi-Layer Feed-Forward and the Fuzzy ART algorithm. This study was conducted on the central corridor of I-4 in Orlando using real-world data collected via the traffic surveillance system. Different scenarios were considered to improve the performance and to capture the sensitivity of the developed algorithms to some factors. The study results showed that the Fuzzy ART algorithm has generally outperformed the Multi-Layer Feed-Forward network and California algorithms #7 and #8.
publisherAmerican Society of Civil Engineers
titlePerformance of Automatic ANN-Based Incident Detection on Freeways
typeJournal Paper
journal volume125
journal issue4
journal titleJournal of Transportation Engineering, Part A: Systems
identifier doi10.1061/(ASCE)0733-947X(1999)125:4(281)
treeJournal of Transportation Engineering, Part A: Systems:;1999:;Volume ( 125 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record