YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Precomputing Influences of Observation for a Network

    Source: Journal of Surveying Engineering:;2000:;Volume ( 126 ):;issue: 001
    Author:
    Rongshin Hsu
    DOI: 10.1061/(ASCE)0733-9453(2000)126:1(8)
    Publisher: American Society of Civil Engineers
    Abstract: Formulae for judging a priori the influences of individual observations on the unknown parameters and the mean network precision are presented. The influences of an observation on the parameters and the mean network precision are measured by the influence index and the percentage share, respectively. The larger the redundancy number, or the smaller the parameter number of the observation, the smaller the influence index will be and hence the less influence the observation will have on the estimate of an unknown parameter vector. A larger parameter number ensures a high percentage share in the mean network precision. The numerical example of the first-order leveling network of Taiwan seems to indicate that a better weighting scheme tends to produce more homogeneities among the individual parameter numbers and their corresponding influence numbers.
    • Download: (73.41Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Precomputing Influences of Observation for a Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/35822
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorRongshin Hsu
    date accessioned2017-05-08T21:01:33Z
    date available2017-05-08T21:01:33Z
    date copyrightFebruary 2000
    date issued2000
    identifier other%28asce%290733-9453%282000%29126%3A1%288%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/35822
    description abstractFormulae for judging a priori the influences of individual observations on the unknown parameters and the mean network precision are presented. The influences of an observation on the parameters and the mean network precision are measured by the influence index and the percentage share, respectively. The larger the redundancy number, or the smaller the parameter number of the observation, the smaller the influence index will be and hence the less influence the observation will have on the estimate of an unknown parameter vector. A larger parameter number ensures a high percentage share in the mean network precision. The numerical example of the first-order leveling network of Taiwan seems to indicate that a better weighting scheme tends to produce more homogeneities among the individual parameter numbers and their corresponding influence numbers.
    publisherAmerican Society of Civil Engineers
    titlePrecomputing Influences of Observation for a Network
    typeJournal Paper
    journal volume126
    journal issue1
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)0733-9453(2000)126:1(8)
    treeJournal of Surveying Engineering:;2000:;Volume ( 126 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian