YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laminated Glass Curtain Walls and Laminated Glass Lites Subjected to Low-Level Blast Loading

    Source: Journal of Structural Engineering:;2008:;Volume ( 134 ):;issue: 003
    Author:
    David C. Weggel
    ,
    Brian J. Zapata
    DOI: 10.1061/(ASCE)0733-9445(2008)134:3(466)
    Publisher: American Society of Civil Engineers
    Abstract: Linear elastic and nonlinear elastic analytical investigations are reported for a nearly conventional, laminated glass curtain wall with split screw spline mullions subjected to low-level blast loading. Responses (dynamic stresses, deflections, and accelerations) of the rectangular glass lites within the curtain wall are compared to those of identical glass lites that are (1) simply supported and (2) supported on structural silicone sealant beads along all four edges. The elastic finite element model of the curtain wall was calibrated to small-amplitude static and dynamic experimental results in a previous effort, where effective mullion moments of inertia, connection stiffnesses, and system damping ratios were determined. This calibrated curtain wall model and the two other glass lite models were subjected to uniform blast pressures represented in time by a triangular pulse. These comparisons are made to illustrate the reduction of principal stresses of the glass lites due to the flexibility of the structural silicone bead and, more significantly, the global flexibility of the curtain wall system. Changes in modal frequencies and the appearance or disappearance of significant response modes due to the different boundary conditions of the glass lites are illustrated. For the cases studied, maximum principal stresses were typically halved when the flexibility of the curtain wall members supporting the lite was considered. This paper also shows that: (1) the dynamic behavior of a given glass lite varies dramatically with support conditions as shown in corroborating modal and transient analyses and (2) geometric nonlinearities typically reduce dynamic responses only slightly when compared to linear geometry for the low-amplitude loads considered in this study.
    • Download: (989.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laminated Glass Curtain Walls and Laminated Glass Lites Subjected to Low-Level Blast Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/35204
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorDavid C. Weggel
    contributor authorBrian J. Zapata
    date accessioned2017-05-08T21:00:30Z
    date available2017-05-08T21:00:30Z
    date copyrightMarch 2008
    date issued2008
    identifier other%28asce%290733-9445%282008%29134%3A3%28466%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/35204
    description abstractLinear elastic and nonlinear elastic analytical investigations are reported for a nearly conventional, laminated glass curtain wall with split screw spline mullions subjected to low-level blast loading. Responses (dynamic stresses, deflections, and accelerations) of the rectangular glass lites within the curtain wall are compared to those of identical glass lites that are (1) simply supported and (2) supported on structural silicone sealant beads along all four edges. The elastic finite element model of the curtain wall was calibrated to small-amplitude static and dynamic experimental results in a previous effort, where effective mullion moments of inertia, connection stiffnesses, and system damping ratios were determined. This calibrated curtain wall model and the two other glass lite models were subjected to uniform blast pressures represented in time by a triangular pulse. These comparisons are made to illustrate the reduction of principal stresses of the glass lites due to the flexibility of the structural silicone bead and, more significantly, the global flexibility of the curtain wall system. Changes in modal frequencies and the appearance or disappearance of significant response modes due to the different boundary conditions of the glass lites are illustrated. For the cases studied, maximum principal stresses were typically halved when the flexibility of the curtain wall members supporting the lite was considered. This paper also shows that: (1) the dynamic behavior of a given glass lite varies dramatically with support conditions as shown in corroborating modal and transient analyses and (2) geometric nonlinearities typically reduce dynamic responses only slightly when compared to linear geometry for the low-amplitude loads considered in this study.
    publisherAmerican Society of Civil Engineers
    titleLaminated Glass Curtain Walls and Laminated Glass Lites Subjected to Low-Level Blast Loading
    typeJournal Paper
    journal volume134
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(2008)134:3(466)
    treeJournal of Structural Engineering:;2008:;Volume ( 134 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian