YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design, Modeling, and Experimental Response of Seismic Resistant Bridge Piers with Posttensioned Dissipating Connections

    Source: Journal of Structural Engineering:;2007:;Volume ( 133 ):;issue: 011
    Author:
    A. Palermo
    ,
    S. Pampanin
    ,
    D. Marriott
    DOI: 10.1061/(ASCE)0733-9445(2007)133:11(1648)
    Publisher: American Society of Civil Engineers
    Abstract: An increasing interest in the development of high-performance seismic resisting systems based on posttensioned, jointed ductile connections has been observed in the last decade. The extensive experimental and numerical studies carried out under the PRESSS program developed efficient alternative solutions for seismic resisting frame or wall systems in precast concrete building construction, typically referred to as jointed ductile connections. Low structural damage and self-centering behavior, leading to negligible residual displacements after an earthquake event, were recognized to be the main features of such systems. Recently, the extension and application of similar technology and seismic design methodologies to bridge piers and systems have been proposed in the literature as a viable and promising alternative to traditional cast-in situ or precast construction. However, a broad acceptance of these solutions in the bridge design and construction industry has yet to be observed. Valid justifications can be found in the lack of official guidelines for design and construction detailing as well as in the general apparent complexity of the design procedure and analytical models presented by the scientific community. In this contribution, confirmations of the unique design flexibility, the ease of construction, and the high seismic performance of jointed ductile hybrid systems, combining recentering and dissipation capabilities, are presented. After a presentation of simple design methodologies and modeling aspects herein adopted to fully control the seismic response of these systems, the experimental results of quasistatic cyclic tests on five 1:3 scaled, bridge pier specimens are reported and discussed. Four alternative hybrid configurations are implemented by varying the ratio between the posttensioning steel and the internal mild steel as well as the initial posttensioning load. Lower levels of damage and negligible residual/permanent deformations are observed in the hybrid solutions when compared to the experimental response of the benchmark specimen, representing a typical monolithic (cast-in situ) ductile solution. In addition, the efficiency of the simple analytical procedure adopted for design and modeling is further validated.
    • Download: (2.030Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design, Modeling, and Experimental Response of Seismic Resistant Bridge Piers with Posttensioned Dissipating Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/34944
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorA. Palermo
    contributor authorS. Pampanin
    contributor authorD. Marriott
    date accessioned2017-05-08T21:00:05Z
    date available2017-05-08T21:00:05Z
    date copyrightNovember 2007
    date issued2007
    identifier other%28asce%290733-9445%282007%29133%3A11%281648%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/34944
    description abstractAn increasing interest in the development of high-performance seismic resisting systems based on posttensioned, jointed ductile connections has been observed in the last decade. The extensive experimental and numerical studies carried out under the PRESSS program developed efficient alternative solutions for seismic resisting frame or wall systems in precast concrete building construction, typically referred to as jointed ductile connections. Low structural damage and self-centering behavior, leading to negligible residual displacements after an earthquake event, were recognized to be the main features of such systems. Recently, the extension and application of similar technology and seismic design methodologies to bridge piers and systems have been proposed in the literature as a viable and promising alternative to traditional cast-in situ or precast construction. However, a broad acceptance of these solutions in the bridge design and construction industry has yet to be observed. Valid justifications can be found in the lack of official guidelines for design and construction detailing as well as in the general apparent complexity of the design procedure and analytical models presented by the scientific community. In this contribution, confirmations of the unique design flexibility, the ease of construction, and the high seismic performance of jointed ductile hybrid systems, combining recentering and dissipation capabilities, are presented. After a presentation of simple design methodologies and modeling aspects herein adopted to fully control the seismic response of these systems, the experimental results of quasistatic cyclic tests on five 1:3 scaled, bridge pier specimens are reported and discussed. Four alternative hybrid configurations are implemented by varying the ratio between the posttensioning steel and the internal mild steel as well as the initial posttensioning load. Lower levels of damage and negligible residual/permanent deformations are observed in the hybrid solutions when compared to the experimental response of the benchmark specimen, representing a typical monolithic (cast-in situ) ductile solution. In addition, the efficiency of the simple analytical procedure adopted for design and modeling is further validated.
    publisherAmerican Society of Civil Engineers
    titleDesign, Modeling, and Experimental Response of Seismic Resistant Bridge Piers with Posttensioned Dissipating Connections
    typeJournal Paper
    journal volume133
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(2007)133:11(1648)
    treeJournal of Structural Engineering:;2007:;Volume ( 133 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian