YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reliability, Brittleness, Covert Understrength Factors, and Fringe Formulas in Concrete Design Codes

    Source: Journal of Structural Engineering:;2006:;Volume ( 132 ):;issue: 001
    Author:
    Zdeněk P. Bažant
    ,
    Qiang Yu
    DOI: 10.1061/(ASCE)0733-9445(2006)132:1(3)
    Publisher: American Society of Civil Engineers
    Abstract: The paper analyzes the reliability consequences of the fact that the current design codes for concrete structure contain covert (or hidden) understrength (or capacity reduction) factors. This prevents distinguishing between different combinations of separate risks due to the statistical scatter of material properties, the error of the design formula, and the degree of brittleness of failure mode, and also makes any prediction of structural reliability (or survival probability) impossible. The covert formula error factor is implied by the fact that the design formula was calibrated to pass not through the mean but through the fringe (or periphery, margin) of the supporting experimental data. The covert material randomness factor is the ratio of the reduced concrete strength required for design to the mean of the strength tests. As a remedy, the covert understrength factor of design formula should be made overt, its coefficient of variation (based on the supporting test data) should be specified, and the type of probability distribution (e.g., Gaussian or Weibull) indicated (which then also implies the probability cutoff). Alternatively, the code could give the mean formula, specify its coefficient of variation and type of distribution, and either prescribe the probability cutoff or overtly declare the understrength factor. The mean of strength tests required for quality control should be figured out from the required design strength on the basis of a specified probability cutoff and the coefficient of variation of these tests. Furthermore, it is proposed that the currently used empirical understrength factor, which accounts mainly for the risks of structural brittleness (or lack of ductility), should be based on the expected maximum kinetic energy that could be imparted to the structure. The reliability integral taking into account the randomness of both the load and structural resistance is generalized for the case of multiple (statistically independent) understrength factors. Finally, it is pointed out that the currently assumed proportionality of the tensile and shear strengths to the square root of compressive strength of concrete is realistic only for the mean, but grossly underestimates the scatter of tensile and shear strengths.
    • Download: (471.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reliability, Brittleness, Covert Understrength Factors, and Fringe Formulas in Concrete Design Codes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/34648
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorZdeněk P. Bažant
    contributor authorQiang Yu
    date accessioned2017-05-08T20:59:37Z
    date available2017-05-08T20:59:37Z
    date copyrightJanuary 2006
    date issued2006
    identifier other%28asce%290733-9445%282006%29132%3A1%283%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/34648
    description abstractThe paper analyzes the reliability consequences of the fact that the current design codes for concrete structure contain covert (or hidden) understrength (or capacity reduction) factors. This prevents distinguishing between different combinations of separate risks due to the statistical scatter of material properties, the error of the design formula, and the degree of brittleness of failure mode, and also makes any prediction of structural reliability (or survival probability) impossible. The covert formula error factor is implied by the fact that the design formula was calibrated to pass not through the mean but through the fringe (or periphery, margin) of the supporting experimental data. The covert material randomness factor is the ratio of the reduced concrete strength required for design to the mean of the strength tests. As a remedy, the covert understrength factor of design formula should be made overt, its coefficient of variation (based on the supporting test data) should be specified, and the type of probability distribution (e.g., Gaussian or Weibull) indicated (which then also implies the probability cutoff). Alternatively, the code could give the mean formula, specify its coefficient of variation and type of distribution, and either prescribe the probability cutoff or overtly declare the understrength factor. The mean of strength tests required for quality control should be figured out from the required design strength on the basis of a specified probability cutoff and the coefficient of variation of these tests. Furthermore, it is proposed that the currently used empirical understrength factor, which accounts mainly for the risks of structural brittleness (or lack of ductility), should be based on the expected maximum kinetic energy that could be imparted to the structure. The reliability integral taking into account the randomness of both the load and structural resistance is generalized for the case of multiple (statistically independent) understrength factors. Finally, it is pointed out that the currently assumed proportionality of the tensile and shear strengths to the square root of compressive strength of concrete is realistic only for the mean, but grossly underestimates the scatter of tensile and shear strengths.
    publisherAmerican Society of Civil Engineers
    titleReliability, Brittleness, Covert Understrength Factors, and Fringe Formulas in Concrete Design Codes
    typeJournal Paper
    journal volume132
    journal issue1
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(2006)132:1(3)
    treeJournal of Structural Engineering:;2006:;Volume ( 132 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian