YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Waved Joint for Seismic-Resistant Precast Floor Diaphragms

    Source: Journal of Structural Engineering:;2005:;Volume ( 131 ):;issue: 010
    Author:
    Marco Menegotto
    ,
    Giorgio Monti
    DOI: 10.1061/(ASCE)0733-9445(2005)131:10(1515)
    Publisher: American Society of Civil Engineers
    Abstract: Floors made of precast concrete hollow-core slabs may be constructed without a structural concrete topping and with transverse tie reinforcement placed only out of the slabs. Longitudinal joints between adjacent precast units are filled with mortar on site. To ensure good diaphragm performance under seismic action, a special joint has been devised, in which the slab sides are profiled as continuous sinusoidal waved shear keys. The research involved experimental investigations and analytical modeling. The features of the joint and the means of production were first worked out. Then, a series of destructive tests were performed, on both short joint samples and full-scale floors, made of extruded prestressed hollow-core slabs without topping, all subjected to large in-plane loading reversals. They showed that, after the adhesion between the grout and precast concrete is overcome, a stable cyclic shear transfer mechanism develops, based on wedge action and friction raised at the wavy slab–mortar interface. The analytical studies led to a specific interface finite element, condensing the behavior of a segment of joint into two degrees of freedom. The model considers also the possibility of the joint being partially open, which may happen when the floor undergoes in-plane bending. This interface element, when implemented in a global model with “shell” finite element representing the slabs, allows for numerical tests on the ultimate behavior of floors of various configurations.
    • Download: (771.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Waved Joint for Seismic-Resistant Precast Floor Diaphragms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/34405
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMarco Menegotto
    contributor authorGiorgio Monti
    date accessioned2017-05-08T20:59:13Z
    date available2017-05-08T20:59:13Z
    date copyrightOctober 2005
    date issued2005
    identifier other%28asce%290733-9445%282005%29131%3A10%281515%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/34405
    description abstractFloors made of precast concrete hollow-core slabs may be constructed without a structural concrete topping and with transverse tie reinforcement placed only out of the slabs. Longitudinal joints between adjacent precast units are filled with mortar on site. To ensure good diaphragm performance under seismic action, a special joint has been devised, in which the slab sides are profiled as continuous sinusoidal waved shear keys. The research involved experimental investigations and analytical modeling. The features of the joint and the means of production were first worked out. Then, a series of destructive tests were performed, on both short joint samples and full-scale floors, made of extruded prestressed hollow-core slabs without topping, all subjected to large in-plane loading reversals. They showed that, after the adhesion between the grout and precast concrete is overcome, a stable cyclic shear transfer mechanism develops, based on wedge action and friction raised at the wavy slab–mortar interface. The analytical studies led to a specific interface finite element, condensing the behavior of a segment of joint into two degrees of freedom. The model considers also the possibility of the joint being partially open, which may happen when the floor undergoes in-plane bending. This interface element, when implemented in a global model with “shell” finite element representing the slabs, allows for numerical tests on the ultimate behavior of floors of various configurations.
    publisherAmerican Society of Civil Engineers
    titleWaved Joint for Seismic-Resistant Precast Floor Diaphragms
    typeJournal Paper
    journal volume131
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(2005)131:10(1515)
    treeJournal of Structural Engineering:;2005:;Volume ( 131 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian