YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling the Dynamic Behavior of Electrical Cabinets and Control Panels: Experimental and Analytical Results

    Source: Journal of Structural Engineering:;2004:;Volume ( 130 ):;issue: 003
    Author:
    Sudhir Rustogi
    ,
    Abhinav Gupta
    DOI: 10.1061/(ASCE)0733-9445(2004)130:3(511)
    Publisher: American Society of Civil Engineers
    Abstract: Ritz vector approach for evaluating the dynamic properties of electrical cabinets is based on the premise that a single significant cabinet mode is sufficient to calculate accurate incabinet spectra needed in the seismic qualification of electrical instruments mounted inside the cabinet. It uses mathematical functions to characterize the significant mode shapes that can be either a local mode shape of the structural member or a superposition of the global cabinet and the local mode shapes. The significant modes for typical cabinets have been identified from fixed-base finite element analyses. In this paper, modal data from in situ and shake table tests for two different cabinets is used to evaluate not only the validity of finite element analysis results but also the premise for developing Ritz vector approach. A key difference observed in the test data is related to the existence of a global rocking in cabinets that are anchored at the base. A rigid body rocking due to base plate uplift cannot be evaluated from fixed-base finite element models that were used in the development of the Ritz vector approach. Finite element analyses after modifications for incorporating cabinet rocking due to base plate uplifting give results that are close to the test data. Even though the test data and the new analyses show that the significant cabinet mode is different from what has been considered in the past, the basic premise for Ritz vector approach remains unchanged. Minor modifications needed in the Ritz vector approach for incorporating cabinet rocking superimposed with local mode shapes are also presented.
    • Download: (158.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling the Dynamic Behavior of Electrical Cabinets and Control Panels: Experimental and Analytical Results

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/34269
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorSudhir Rustogi
    contributor authorAbhinav Gupta
    date accessioned2017-05-08T20:59:00Z
    date available2017-05-08T20:59:00Z
    date copyrightMarch 2004
    date issued2004
    identifier other%28asce%290733-9445%282004%29130%3A3%28511%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/34269
    description abstractRitz vector approach for evaluating the dynamic properties of electrical cabinets is based on the premise that a single significant cabinet mode is sufficient to calculate accurate incabinet spectra needed in the seismic qualification of electrical instruments mounted inside the cabinet. It uses mathematical functions to characterize the significant mode shapes that can be either a local mode shape of the structural member or a superposition of the global cabinet and the local mode shapes. The significant modes for typical cabinets have been identified from fixed-base finite element analyses. In this paper, modal data from in situ and shake table tests for two different cabinets is used to evaluate not only the validity of finite element analysis results but also the premise for developing Ritz vector approach. A key difference observed in the test data is related to the existence of a global rocking in cabinets that are anchored at the base. A rigid body rocking due to base plate uplift cannot be evaluated from fixed-base finite element models that were used in the development of the Ritz vector approach. Finite element analyses after modifications for incorporating cabinet rocking due to base plate uplifting give results that are close to the test data. Even though the test data and the new analyses show that the significant cabinet mode is different from what has been considered in the past, the basic premise for Ritz vector approach remains unchanged. Minor modifications needed in the Ritz vector approach for incorporating cabinet rocking superimposed with local mode shapes are also presented.
    publisherAmerican Society of Civil Engineers
    titleModeling the Dynamic Behavior of Electrical Cabinets and Control Panels: Experimental and Analytical Results
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(2004)130:3(511)
    treeJournal of Structural Engineering:;2004:;Volume ( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian