YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stiffness and Deflection of Steel–Concrete Composite Beams under Negative Bending

    Source: Journal of Structural Engineering:;2004:;Volume ( 130 ):;issue: 011
    Author:
    Jianguo Nie
    ,
    Jiansheng Fan
    ,
    C. S. Cai
    DOI: 10.1061/(ASCE)0733-9445(2004)130:11(1842)
    Publisher: American Society of Civil Engineers
    Abstract: Compared with simply supported beams, continuous steel–concrete composite beams have many advantages such as higher span/depth ratio, less deflection, and higher fundamental frequency of vibration due to its higher stiffness. However, in negative bending regions near interior supports, tension in concrete is unfavorable and a complicated issue, which deserves a special study. In this paper, a mechanics model based on elastic theory was established to investigate the stiffness of composite beams in negative bending regions by considering slips at the steel beam–concrete slab interface and concrete–reinforcement interface. In order to validate this approach, a test of three composite beams with profiled sheeting under negative bending was conducted. Meanwhile, a three-dimensional nonlinear finite element (FE) analysis was conducted to investigate the general behavior of the tested specimens. In addition, a comparative analysis between results derived from the analytical model, laboratory test, and FE analysis was performed. The results show that slip always exists for composite beams under negative bending even with complete shear connection (full composite action) between the steel and concrete components. The slip effect results in an additional curvature of beam bending and reduces the section stiffness by 10–20% compared with that of a beam without any slip in serviceability condition. This reduction should be considered in designing process especially for cantilever beams. Formulae under other loading cases and boundary conditions were also proposed. The results can serve as a basis for further study on stiffness of continuous steel–concrete composite beams and can directly be used for the deflection calculation of cantilever beams.
    • Download: (156.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stiffness and Deflection of Steel–Concrete Composite Beams under Negative Bending

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/34202
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorJianguo Nie
    contributor authorJiansheng Fan
    contributor authorC. S. Cai
    date accessioned2017-05-08T20:58:54Z
    date available2017-05-08T20:58:54Z
    date copyrightNovember 2004
    date issued2004
    identifier other%28asce%290733-9445%282004%29130%3A11%281842%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/34202
    description abstractCompared with simply supported beams, continuous steel–concrete composite beams have many advantages such as higher span/depth ratio, less deflection, and higher fundamental frequency of vibration due to its higher stiffness. However, in negative bending regions near interior supports, tension in concrete is unfavorable and a complicated issue, which deserves a special study. In this paper, a mechanics model based on elastic theory was established to investigate the stiffness of composite beams in negative bending regions by considering slips at the steel beam–concrete slab interface and concrete–reinforcement interface. In order to validate this approach, a test of three composite beams with profiled sheeting under negative bending was conducted. Meanwhile, a three-dimensional nonlinear finite element (FE) analysis was conducted to investigate the general behavior of the tested specimens. In addition, a comparative analysis between results derived from the analytical model, laboratory test, and FE analysis was performed. The results show that slip always exists for composite beams under negative bending even with complete shear connection (full composite action) between the steel and concrete components. The slip effect results in an additional curvature of beam bending and reduces the section stiffness by 10–20% compared with that of a beam without any slip in serviceability condition. This reduction should be considered in designing process especially for cantilever beams. Formulae under other loading cases and boundary conditions were also proposed. The results can serve as a basis for further study on stiffness of continuous steel–concrete composite beams and can directly be used for the deflection calculation of cantilever beams.
    publisherAmerican Society of Civil Engineers
    titleStiffness and Deflection of Steel–Concrete Composite Beams under Negative Bending
    typeJournal Paper
    journal volume130
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(2004)130:11(1842)
    treeJournal of Structural Engineering:;2004:;Volume ( 130 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian