YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of NSP to Estimate Seismic Deformation: SDF Systems

    Source: Journal of Structural Engineering:;2000:;Volume ( 126 ):;issue: 004
    Author:
    Anil K. Chopra
    ,
    Rakesh K. Goel
    DOI: 10.1061/(ASCE)0733-9445(2000)126:4(482)
    Publisher: American Society of Civil Engineers
    Abstract: Investigated in this paper is the approximation in the ATC-40 nonlinear static procedure (NSP) that the earthquake-induced deformation of an inelastic single-degree-of-freedom (SDF) system can be estimated by an iterative method requiring analysis of a sequence of equivalent linear systems. Several deficiencies in the ATC-40 Procedure A are demonstrated. This iterative procedure did not converge for some of the systems analyzed. It converged in many cases, but to a deformation much different than dynamic (nonlinear response history or inelastic design spectrum) analysis of the inelastic system. The ATC-40 Procedure B always gives a unique value of deformation, same as that determined by Procedure A if it converged. These approximate procedures underestimate significantly the deformation for a wide range of periods and ductility factors with errors approaching 50%, implying that the estimated deformation is about half the “exact” value. Surprisingly, the ATC-40 procedures are deficient relative to even the elastic design spectrum in the velocity-sensitive and displacement-sensitive regions of the spectrum. For systems with a period in these regions, the peak deformation of an inelastic system can be estimated from the elastic design spectrum using the well-known equal displacement rule. However, the approximate procedure requires analyses of several equivalent linear systems and still produces worse results.
    • Download: (194.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of NSP to Estimate Seismic Deformation: SDF Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/33380
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAnil K. Chopra
    contributor authorRakesh K. Goel
    date accessioned2017-05-08T20:57:38Z
    date available2017-05-08T20:57:38Z
    date copyrightApril 2000
    date issued2000
    identifier other%28asce%290733-9445%282000%29126%3A4%28482%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/33380
    description abstractInvestigated in this paper is the approximation in the ATC-40 nonlinear static procedure (NSP) that the earthquake-induced deformation of an inelastic single-degree-of-freedom (SDF) system can be estimated by an iterative method requiring analysis of a sequence of equivalent linear systems. Several deficiencies in the ATC-40 Procedure A are demonstrated. This iterative procedure did not converge for some of the systems analyzed. It converged in many cases, but to a deformation much different than dynamic (nonlinear response history or inelastic design spectrum) analysis of the inelastic system. The ATC-40 Procedure B always gives a unique value of deformation, same as that determined by Procedure A if it converged. These approximate procedures underestimate significantly the deformation for a wide range of periods and ductility factors with errors approaching 50%, implying that the estimated deformation is about half the “exact” value. Surprisingly, the ATC-40 procedures are deficient relative to even the elastic design spectrum in the velocity-sensitive and displacement-sensitive regions of the spectrum. For systems with a period in these regions, the peak deformation of an inelastic system can be estimated from the elastic design spectrum using the well-known equal displacement rule. However, the approximate procedure requires analyses of several equivalent linear systems and still produces worse results.
    publisherAmerican Society of Civil Engineers
    titleEvaluation of NSP to Estimate Seismic Deformation: SDF Systems
    typeJournal Paper
    journal volume126
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(2000)126:4(482)
    treeJournal of Structural Engineering:;2000:;Volume ( 126 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian