YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Moment-Rotation Hysteresis Behavior of Top and Seat Angle Steel Frame Connections

    Source: Journal of Structural Engineering:;1999:;Volume ( 125 ):;issue: 008
    Author:
    Anant R. Kukreti
    ,
    Ali S. Abolmaali
    DOI: 10.1061/(ASCE)0733-9445(1999)125:8(810)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents an approach toward formulating analytical models to predict the moment-rotation hysteresis behavior of top and seat angle connections. Experimental results obtained from 12 top and seat angle connection specimens are used to obtain the prediction equations for the parameters defining the moment rotation hysteresis loops of a typical top and seat angle connection. These parameters include the initial stiffness, ultimate moment capacity, ultimate rotation, the transition moment, characteristic moment, and rigidity parameter. Regression analysis results and comparisons with test results are presented to demonstrate the acceptability of these prediction equations. The prediction equations obtained for these parameters are used to develop four different moment rotation hysteresis models for the connection: the bilinear, elastoplastic, Ramberg-Osgood, and modified bilinear models. The results of the study show that the top and seat angle connection behaves as a semirigid connection. A wide range of initial stiffnesses and ultimate moment capacities are possible to achieve by altering the connection geometry related variables within a practical range. For certain geometric configurations of the connection, significant transfer of moment from the beam to the column can occur before the connection fails. Also, it is possible to design a connection with flow stiffness and small moment transfer capability, so that it behaves in a manner such that it is close to being classified as a pin connection. The prediction equations developed for the parameters characterizing the four hysteresis models give acceptable results when compared to experimental results. The degree to which the models idealize the actual behavior varies with the elastoplastic model being the least conservative and the modified bilinear model being the best. The Ramberg-Osgood model is the most accurate in just modeling the nonpinching moment-rotation loops.
    • Download: (241.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Moment-Rotation Hysteresis Behavior of Top and Seat Angle Steel Frame Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/33232
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAnant R. Kukreti
    contributor authorAli S. Abolmaali
    date accessioned2017-05-08T20:57:28Z
    date available2017-05-08T20:57:28Z
    date copyrightAugust 1999
    date issued1999
    identifier other%28asce%290733-9445%281999%29125%3A8%28810%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/33232
    description abstractThis paper presents an approach toward formulating analytical models to predict the moment-rotation hysteresis behavior of top and seat angle connections. Experimental results obtained from 12 top and seat angle connection specimens are used to obtain the prediction equations for the parameters defining the moment rotation hysteresis loops of a typical top and seat angle connection. These parameters include the initial stiffness, ultimate moment capacity, ultimate rotation, the transition moment, characteristic moment, and rigidity parameter. Regression analysis results and comparisons with test results are presented to demonstrate the acceptability of these prediction equations. The prediction equations obtained for these parameters are used to develop four different moment rotation hysteresis models for the connection: the bilinear, elastoplastic, Ramberg-Osgood, and modified bilinear models. The results of the study show that the top and seat angle connection behaves as a semirigid connection. A wide range of initial stiffnesses and ultimate moment capacities are possible to achieve by altering the connection geometry related variables within a practical range. For certain geometric configurations of the connection, significant transfer of moment from the beam to the column can occur before the connection fails. Also, it is possible to design a connection with flow stiffness and small moment transfer capability, so that it behaves in a manner such that it is close to being classified as a pin connection. The prediction equations developed for the parameters characterizing the four hysteresis models give acceptable results when compared to experimental results. The degree to which the models idealize the actual behavior varies with the elastoplastic model being the least conservative and the modified bilinear model being the best. The Ramberg-Osgood model is the most accurate in just modeling the nonpinching moment-rotation loops.
    publisherAmerican Society of Civil Engineers
    titleMoment-Rotation Hysteresis Behavior of Top and Seat Angle Steel Frame Connections
    typeJournal Paper
    journal volume125
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(1999)125:8(810)
    treeJournal of Structural Engineering:;1999:;Volume ( 125 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian