YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiple Objective LQG Control of Wind-Excited Buildings

    Source: Journal of Structural Engineering:;1997:;Volume ( 123 ):;issue: 007
    Author:
    Seshasayee Ankireddi
    ,
    Henry T. Y. Yang
    DOI: 10.1061/(ASCE)0733-9445(1997)123:7(943)
    Publisher: American Society of Civil Engineers
    Abstract: A procedure for the design of controllers for tall buildings under wind loads is presented. It is assumed that there are constraints on the design, in terms of requiring that the root-mean square (RMS) values of certain displacements, velocities, or accelerations be within prescribed values. In addition, there are constraints on the RMS control force available. Under these conditions, the synthesis of a stabilizing controller is investigated. The solution process involves posing the search for a controller as a problem of constrained optimization for which the Lagrange multipliers are determined by an ellipsoid algorithm. These multipliers are directly related to the weights in the objective function of an associated Linear Quadratic Gaussian (LQG) optimal control problem. Thus the design problem may be seen to be one of optimal weight selection in the LQG setting. Two examples of tall buildings under wind loads, involving the design of active tuned mass dampers, are considered to illustrate the design process and to assess the performance of the controllers. Results on the performance of the designs and the control effectiveness are presented and discussed. The generality of the current procedure enables it to be applied directly to other kinds of structures like bridges, shell-like domes, cooling towers, tall chimneys, under earthquake or wind loads, and using either active mass dampers, active tendon control, or other technqiues as appropriate.
    • Download: (1.208Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiple Objective LQG Control of Wind-Excited Buildings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/32783
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorSeshasayee Ankireddi
    contributor authorHenry T. Y. Yang
    date accessioned2017-05-08T20:56:47Z
    date available2017-05-08T20:56:47Z
    date copyrightJuly 1997
    date issued1997
    identifier other%28asce%290733-9445%281997%29123%3A7%28943%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/32783
    description abstractA procedure for the design of controllers for tall buildings under wind loads is presented. It is assumed that there are constraints on the design, in terms of requiring that the root-mean square (RMS) values of certain displacements, velocities, or accelerations be within prescribed values. In addition, there are constraints on the RMS control force available. Under these conditions, the synthesis of a stabilizing controller is investigated. The solution process involves posing the search for a controller as a problem of constrained optimization for which the Lagrange multipliers are determined by an ellipsoid algorithm. These multipliers are directly related to the weights in the objective function of an associated Linear Quadratic Gaussian (LQG) optimal control problem. Thus the design problem may be seen to be one of optimal weight selection in the LQG setting. Two examples of tall buildings under wind loads, involving the design of active tuned mass dampers, are considered to illustrate the design process and to assess the performance of the controllers. Results on the performance of the designs and the control effectiveness are presented and discussed. The generality of the current procedure enables it to be applied directly to other kinds of structures like bridges, shell-like domes, cooling towers, tall chimneys, under earthquake or wind loads, and using either active mass dampers, active tendon control, or other technqiues as appropriate.
    publisherAmerican Society of Civil Engineers
    titleMultiple Objective LQG Control of Wind-Excited Buildings
    typeJournal Paper
    journal volume123
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(1997)123:7(943)
    treeJournal of Structural Engineering:;1997:;Volume ( 123 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian