YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lateral-Load Response of Two Reinforced Concrete Bents

    Source: Journal of Structural Engineering:;1997:;Volume ( 123 ):;issue: 004
    Author:
    Marc O. Eberhard
    ,
    M. Lee Marsh
    DOI: 10.1061/(ASCE)0733-9445(1997)123:4(461)
    Publisher: American Society of Civil Engineers
    Abstract: Two reinforced concrete bridge bents were subjected to large, transverse displacements. The bents contained detailing deficiencies typical of the 1960s, including minimal transverse reinforcement, short reinforcing splices, and a lack of top reinforcement in the footings. Spalling of the concrete cover at the column tops began at a drift ratio of 1.5. At this drift ratio, the column displacement ductility was approximately four, the curvature ductility was eight, and nominal curvature in the plastic hinges corresponded to a nominal maximum concrete strain of 0.01. In spite of their deficiencies, the bents resisted transverse loads equal to nearly 40% of the bridge's weight at a drift ratio of 3%. The ductile response was attributed to a low shear demand and to the influence of the soil in redistributing the rotational demands away from the column splices. The measured response was reproduced well by an analytical model that considered the nonlinear force-deformation relationships of the columns and soil. The results of a parametric study indicated that the soil surrounding the column bases increased the column shear demand by 25%.
    • Download: (1.285Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lateral-Load Response of Two Reinforced Concrete Bents

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/32715
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMarc O. Eberhard
    contributor authorM. Lee Marsh
    date accessioned2017-05-08T20:56:41Z
    date available2017-05-08T20:56:41Z
    date copyrightApril 1997
    date issued1997
    identifier other%28asce%290733-9445%281997%29123%3A4%28461%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/32715
    description abstractTwo reinforced concrete bridge bents were subjected to large, transverse displacements. The bents contained detailing deficiencies typical of the 1960s, including minimal transverse reinforcement, short reinforcing splices, and a lack of top reinforcement in the footings. Spalling of the concrete cover at the column tops began at a drift ratio of 1.5. At this drift ratio, the column displacement ductility was approximately four, the curvature ductility was eight, and nominal curvature in the plastic hinges corresponded to a nominal maximum concrete strain of 0.01. In spite of their deficiencies, the bents resisted transverse loads equal to nearly 40% of the bridge's weight at a drift ratio of 3%. The ductile response was attributed to a low shear demand and to the influence of the soil in redistributing the rotational demands away from the column splices. The measured response was reproduced well by an analytical model that considered the nonlinear force-deformation relationships of the columns and soil. The results of a parametric study indicated that the soil surrounding the column bases increased the column shear demand by 25%.
    publisherAmerican Society of Civil Engineers
    titleLateral-Load Response of Two Reinforced Concrete Bents
    typeJournal Paper
    journal volume123
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)0733-9445(1997)123:4(461)
    treeJournal of Structural Engineering:;1997:;Volume ( 123 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian