YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hybrid Time-Cost Optimization of Nonserial Repetitive Construction Projects

    Source: Journal of Construction Engineering and Management:;2009:;Volume ( 135 ):;issue: 001
    Author:
    A. Samer Ezeldin
    ,
    Ahmed Soliman
    DOI: 10.1061/(ASCE)0733-9364(2009)135:1(42)
    Publisher: American Society of Civil Engineers
    Abstract: Time-cost trade-off analysis represents a challenging task because the activity duration and cost have uncertainty associated with them, which should be considered when performing schedule optimization. This study proposes a hybrid technique that combines genetic algorithms (GAs) with dynamic programming to solve construction projects time-cost trade-off problems under uncertainty. The technique is formulated to apply to project schedules with repetitive nonserial subprojects that are common in the construction industry such as multiunit housing projects and retail network development projects. A generalized mathematical model is derived to account for factors affecting cost and duration relationships at both the activity and project levels. First, a genetic algorithm is utilized to find optimum and near optimum solutions from the complicated hyperplane formed by the coding system. Then, a dynamic programming procedure is utilized to search the vicinity of each of the near optima found by the GA, and converges on the global optima. The entire optimization process is conducted using a custom developed computer code. The validation and implementation of the proposed techniques is done over three axes. Mathematical correctness is validated through function optimization of test functions with known optima. Applicability to scheduling problems is validated through optimization of a 14 activity miniproject found in the literature for results comparison. Finally implementation to a case study is done over a gas station development program to produce optimum schedules and corresponding trade-off curves. Results show that genetic algorithms can be integrated with dynamic programming techniques to provide an effective means of solving for optimal project schedules in an enhanced realistic approach.
    • Download: (496.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hybrid Time-Cost Optimization of Nonserial Repetitive Construction Projects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/28864
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorA. Samer Ezeldin
    contributor authorAhmed Soliman
    date accessioned2017-05-08T20:50:25Z
    date available2017-05-08T20:50:25Z
    date copyrightJanuary 2009
    date issued2009
    identifier other%28asce%290733-9364%282009%29135%3A1%2842%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/28864
    description abstractTime-cost trade-off analysis represents a challenging task because the activity duration and cost have uncertainty associated with them, which should be considered when performing schedule optimization. This study proposes a hybrid technique that combines genetic algorithms (GAs) with dynamic programming to solve construction projects time-cost trade-off problems under uncertainty. The technique is formulated to apply to project schedules with repetitive nonserial subprojects that are common in the construction industry such as multiunit housing projects and retail network development projects. A generalized mathematical model is derived to account for factors affecting cost and duration relationships at both the activity and project levels. First, a genetic algorithm is utilized to find optimum and near optimum solutions from the complicated hyperplane formed by the coding system. Then, a dynamic programming procedure is utilized to search the vicinity of each of the near optima found by the GA, and converges on the global optima. The entire optimization process is conducted using a custom developed computer code. The validation and implementation of the proposed techniques is done over three axes. Mathematical correctness is validated through function optimization of test functions with known optima. Applicability to scheduling problems is validated through optimization of a 14 activity miniproject found in the literature for results comparison. Finally implementation to a case study is done over a gas station development program to produce optimum schedules and corresponding trade-off curves. Results show that genetic algorithms can be integrated with dynamic programming techniques to provide an effective means of solving for optimal project schedules in an enhanced realistic approach.
    publisherAmerican Society of Civil Engineers
    titleHybrid Time-Cost Optimization of Nonserial Repetitive Construction Projects
    typeJournal Paper
    journal volume135
    journal issue1
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)0733-9364(2009)135:1(42)
    treeJournal of Construction Engineering and Management:;2009:;Volume ( 135 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian