YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Integrated Storm-Water Management for Watershed Sustainability

    Source: Journal of Irrigation and Drainage Engineering:;2008:;Volume ( 134 ):;issue: 005
    Author:
    Robert Pitt
    ,
    Shirley E. Clark
    DOI: 10.1061/(ASCE)0733-9437(2008)134:5(548)
    Publisher: American Society of Civil Engineers
    Abstract: One aspect of integrated watershed management evaluates the impact of development on the local hydrologic cycle and, in particular, drinking water, wastewater, and storm-water infrastructure. Sustainable storm-water management focuses on selecting storm-water controls based on an understanding of the problems in local receiving waters that result from runoff discharges. For example, long-term problems associated with accumulations of pollutants in water bodies include sedimentation in conveyance systems and receiving waters, nuisance algal growths, inedible fish, undrinkable water, and shifts to less sensitive aquatic organisms. Short-term problems associated with high pollutant concentrations or frequent high flows (event-related) include swimming beach closures, water quality violations, property damage from increased flooding, and habitat destruction. A wide variety of individual storm-water controls usually must be combined to form a comprehensive wet weather management strategy. Unfortunately, combinations of controls are difficult to analyze. This will require new modeling techniques that can effectively evaluate a wide variety of control practices and land uses, while at the same time ensure that the flood-control objectives also are met. The results of these new models and novel techniques used for storm-water control then can be incorporated into an evaluation of the urban water cycle for a specific service area to determine whether storm-water controls can provide additional benefits such as reduction of potable water use and reduction of sanitary sewer overflow events.
    • Download: (397.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Integrated Storm-Water Management for Watershed Sustainability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/28688
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorRobert Pitt
    contributor authorShirley E. Clark
    date accessioned2017-05-08T20:50:08Z
    date available2017-05-08T20:50:08Z
    date copyrightOctober 2008
    date issued2008
    identifier other%28asce%290733-9437%282008%29134%3A5%28548%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/28688
    description abstractOne aspect of integrated watershed management evaluates the impact of development on the local hydrologic cycle and, in particular, drinking water, wastewater, and storm-water infrastructure. Sustainable storm-water management focuses on selecting storm-water controls based on an understanding of the problems in local receiving waters that result from runoff discharges. For example, long-term problems associated with accumulations of pollutants in water bodies include sedimentation in conveyance systems and receiving waters, nuisance algal growths, inedible fish, undrinkable water, and shifts to less sensitive aquatic organisms. Short-term problems associated with high pollutant concentrations or frequent high flows (event-related) include swimming beach closures, water quality violations, property damage from increased flooding, and habitat destruction. A wide variety of individual storm-water controls usually must be combined to form a comprehensive wet weather management strategy. Unfortunately, combinations of controls are difficult to analyze. This will require new modeling techniques that can effectively evaluate a wide variety of control practices and land uses, while at the same time ensure that the flood-control objectives also are met. The results of these new models and novel techniques used for storm-water control then can be incorporated into an evaluation of the urban water cycle for a specific service area to determine whether storm-water controls can provide additional benefits such as reduction of potable water use and reduction of sanitary sewer overflow events.
    publisherAmerican Society of Civil Engineers
    titleIntegrated Storm-Water Management for Watershed Sustainability
    typeJournal Paper
    journal volume134
    journal issue5
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)0733-9437(2008)134:5(548)
    treeJournal of Irrigation and Drainage Engineering:;2008:;Volume ( 134 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian