YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Circular Isobaric Cavity in Descending Unsaturated Flow

    Source: Journal of Irrigation and Drainage Engineering:;2000:;Volume ( 126 ):;issue: 003
    Author:
    A. R. Kacimov
    DOI: 10.1061/(ASCE)0733-9437(2000)126:3(172)
    Publisher: American Society of Civil Engineers
    Abstract: Two-dimensional flows near cavities were studied by superposition of the Philip solution for an isobaric cylindrical cavity in an infinite unsaturated soil and vertical infiltration. Depending on the radius of the cavity and the intensity of the net infiltration, the cavity irrigates the surrounding soil forming a plume of seeping moisture (source regime), drains the descending infiltration forming a capture zone (sink regime), or admits water through its upper section and releases water through its bottom (dipole regime). The separatrices, i.e., the lines, which divide the incoming, outgoing, and passing-by portions of the flow, were found. For the dipole regime, the values of flow rates through the admitting and releasing sections of the cavity and streamlines were calculated. The supercritical flow regime is characterized by a permeable blunt upstream section of the cavity and watertight downstream segments. For elongated cavities, this regime was modeled as a combination of a permeable isobaric segment and a part of the adjacent separatrice. Analogies with saturated flows in confined aquifers near a circular constant head boundary and with contaminant transport from a circular isoconcentric source were discussed.
    • Download: (113.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Circular Isobaric Cavity in Descending Unsaturated Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/27980
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorA. R. Kacimov
    date accessioned2017-05-08T20:49:04Z
    date available2017-05-08T20:49:04Z
    date copyrightMay 2000
    date issued2000
    identifier other%28asce%290733-9437%282000%29126%3A3%28172%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/27980
    description abstractTwo-dimensional flows near cavities were studied by superposition of the Philip solution for an isobaric cylindrical cavity in an infinite unsaturated soil and vertical infiltration. Depending on the radius of the cavity and the intensity of the net infiltration, the cavity irrigates the surrounding soil forming a plume of seeping moisture (source regime), drains the descending infiltration forming a capture zone (sink regime), or admits water through its upper section and releases water through its bottom (dipole regime). The separatrices, i.e., the lines, which divide the incoming, outgoing, and passing-by portions of the flow, were found. For the dipole regime, the values of flow rates through the admitting and releasing sections of the cavity and streamlines were calculated. The supercritical flow regime is characterized by a permeable blunt upstream section of the cavity and watertight downstream segments. For elongated cavities, this regime was modeled as a combination of a permeable isobaric segment and a part of the adjacent separatrice. Analogies with saturated flows in confined aquifers near a circular constant head boundary and with contaminant transport from a circular isoconcentric source were discussed.
    publisherAmerican Society of Civil Engineers
    titleCircular Isobaric Cavity in Descending Unsaturated Flow
    typeJournal Paper
    journal volume126
    journal issue3
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)0733-9437(2000)126:3(172)
    treeJournal of Irrigation and Drainage Engineering:;2000:;Volume ( 126 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian