YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow Structure at Different Stages in a Meander-Bend with Bendway Weirs

    Source: Journal of Hydraulic Engineering:;2008:;Volume ( 134 ):;issue: 008
    Author:
    Jorge D. Abad
    ,
    Bruce L. Rhoads
    ,
    İnci Güneralp
    ,
    Marcelo H. García
    DOI: 10.1061/(ASCE)0733-9429(2008)134:8(1052)
    Publisher: American Society of Civil Engineers
    Abstract: Streambank erosion is an important management issue, particularly for meandering rivers. Recently, bendway weirs have become popular control measures for bank erosion along small meandering streams in the agricultural Midwest. Although these structures have successfully mitigated bank erosion in some cases, there is evidence that the weirs do not always perform as anticipated. Scientific understanding of how bendway weirs influence flow dynamics, streambank erosion, and aquatic habitat is limited. Current design criteria are based primarily on expert judgment rather than a formalized technical design procedure. At field-scale studies, the present paper represents a first step toward an integrated geomorphological and engineering evaluation of the performance of bendway weirs in rivers. To accomplish this initial phase, three-dimensional (3D) velocity data were collected on Sugar Creek at Brookside Farm, Ill., and 3D numerical simulations for low-flow conditions were performed to validate the computational fluid dynamic model. Overall results show good agreement between measured and simulated data for streamwise velocities and turbulence kinetic energy. The model is less accurate at predicting the velocity and turbulence kinetic energy in the shear layer immediately downstream from the weir tips. Based on the validation for low-flow condition, 3D simulations were carried out for medium and high flows where the bendway weirs are completely submerged. These simulations indicate that 3D patterns of flow, especially flow near the outer bank, change dramatically with changes in flow stage. Flow patterns at high-flow condition indicate that bank retreat over the tops of weirs is associated with locally high-shear stresses, thus producing a “shelf” along the base of the outer bank as observed in the field.
    • Download: (2.821Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow Structure at Different Stages in a Meander-Bend with Bendway Weirs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/26568
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorJorge D. Abad
    contributor authorBruce L. Rhoads
    contributor authorİnci Güneralp
    contributor authorMarcelo H. García
    date accessioned2017-05-08T20:46:14Z
    date available2017-05-08T20:46:14Z
    date copyrightAugust 2008
    date issued2008
    identifier other%28asce%290733-9429%282008%29134%3A8%281052%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/26568
    description abstractStreambank erosion is an important management issue, particularly for meandering rivers. Recently, bendway weirs have become popular control measures for bank erosion along small meandering streams in the agricultural Midwest. Although these structures have successfully mitigated bank erosion in some cases, there is evidence that the weirs do not always perform as anticipated. Scientific understanding of how bendway weirs influence flow dynamics, streambank erosion, and aquatic habitat is limited. Current design criteria are based primarily on expert judgment rather than a formalized technical design procedure. At field-scale studies, the present paper represents a first step toward an integrated geomorphological and engineering evaluation of the performance of bendway weirs in rivers. To accomplish this initial phase, three-dimensional (3D) velocity data were collected on Sugar Creek at Brookside Farm, Ill., and 3D numerical simulations for low-flow conditions were performed to validate the computational fluid dynamic model. Overall results show good agreement between measured and simulated data for streamwise velocities and turbulence kinetic energy. The model is less accurate at predicting the velocity and turbulence kinetic energy in the shear layer immediately downstream from the weir tips. Based on the validation for low-flow condition, 3D simulations were carried out for medium and high flows where the bendway weirs are completely submerged. These simulations indicate that 3D patterns of flow, especially flow near the outer bank, change dramatically with changes in flow stage. Flow patterns at high-flow condition indicate that bank retreat over the tops of weirs is associated with locally high-shear stresses, thus producing a “shelf” along the base of the outer bank as observed in the field.
    publisherAmerican Society of Civil Engineers
    titleFlow Structure at Different Stages in a Meander-Bend with Bendway Weirs
    typeJournal Paper
    journal volume134
    journal issue8
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2008)134:8(1052)
    treeJournal of Hydraulic Engineering:;2008:;Volume ( 134 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian