YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fine-Scale Characterization of the Turbulent Shear Layer of an Instream Pebble Cluster

    Source: Journal of Hydraulic Engineering:;2008:;Volume ( 134 ):;issue: 007
    Author:
    R. W. Jay Lacey
    ,
    André G. Roy
    DOI: 10.1061/(ASCE)0733-9429(2008)134:7(925)
    Publisher: American Society of Civil Engineers
    Abstract: This study characterizes the shear layer and associated vortex shedding around an isolated submerged pebble cluster in a gravel-bed river. The approach combines flow visualization and high frequency three-dimensional velocity (acoustic Doppler velocimeter) measurements. Two vortex shedding modes in the wake of the cluster were identified: A small scale high frequency initial instability mode and a lower frequency mode that scales with cluster height. The lower frequency mode arose from the intermittent interaction and amalgamation of the small-scale instability vortices. Reynolds shear stresses, velocity spectra, and coherence functions indicated a dominance of longitudinal-vertical shedding vortices in the wake of the cluster. Simultaneous flow visualization was required to determine the nature and behavior of the shedding modes. Quadrant analysis revealed that Q2 and Q4 events contributed 80% of the local longitudinal-vertical component Reynolds shear stress, and demonstrated a dominance of ejection events in the wake of the cluster. Through flow visualization, the behavior of the shear layer was seen to vertically expand and contract with the passage of Q2 and Q4 events, respectively.
    • Download: (1.500Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fine-Scale Characterization of the Turbulent Shear Layer of an Instream Pebble Cluster

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/26558
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorR. W. Jay Lacey
    contributor authorAndré G. Roy
    date accessioned2017-05-08T20:46:13Z
    date available2017-05-08T20:46:13Z
    date copyrightJuly 2008
    date issued2008
    identifier other%28asce%290733-9429%282008%29134%3A7%28925%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/26558
    description abstractThis study characterizes the shear layer and associated vortex shedding around an isolated submerged pebble cluster in a gravel-bed river. The approach combines flow visualization and high frequency three-dimensional velocity (acoustic Doppler velocimeter) measurements. Two vortex shedding modes in the wake of the cluster were identified: A small scale high frequency initial instability mode and a lower frequency mode that scales with cluster height. The lower frequency mode arose from the intermittent interaction and amalgamation of the small-scale instability vortices. Reynolds shear stresses, velocity spectra, and coherence functions indicated a dominance of longitudinal-vertical shedding vortices in the wake of the cluster. Simultaneous flow visualization was required to determine the nature and behavior of the shedding modes. Quadrant analysis revealed that Q2 and Q4 events contributed 80% of the local longitudinal-vertical component Reynolds shear stress, and demonstrated a dominance of ejection events in the wake of the cluster. Through flow visualization, the behavior of the shear layer was seen to vertically expand and contract with the passage of Q2 and Q4 events, respectively.
    publisherAmerican Society of Civil Engineers
    titleFine-Scale Characterization of the Turbulent Shear Layer of an Instream Pebble Cluster
    typeJournal Paper
    journal volume134
    journal issue7
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2008)134:7(925)
    treeJournal of Hydraulic Engineering:;2008:;Volume ( 134 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian