YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coherent Structures in the Flow Field around a Circular Cylinder with Scour Hole

    Source: Journal of Hydraulic Engineering:;2008:;Volume ( 134 ):;issue: 005
    Author:
    G. Kirkil
    ,
    S. G. Constantinescu
    ,
    R. Ettema
    DOI: 10.1061/(ASCE)0733-9429(2008)134:5(572)
    Publisher: American Society of Civil Engineers
    Abstract: Large-eddy simulation (LES) and laboratory-flume visualizations were used to investigate coherent structures present in the flow field around a circular cylinder located in a scour hole. The bathymetry corresponds to equilibrium scour conditions and is fixed in LES. The flow parameters in the simulation correspond to the experimental conditions in which the approach flow is fully turbulent. Detailed consideration is given to the interaction of the horseshoe vortex (HV) system within the scour hole with the detached shear layers formed from the cylinder, and the near bed turbulence. It is found that the overall structure of the HV system varies considerably in space and time, though a large, relatively stable, primary necklace vortex is present at practically all times inside the scour hole. The simulation captures the presence of bimodal chaotic oscillations inside the HV system, as well as the sharp increase in the resolved turbulent kinetic energy levels and pressure fluctuations reported in prior experimental investigations. High levels of the mean bed shear stress are observed beneath the primary necklace vortex, especially over the region where the bimodal oscillations are strong, as well as beneath the small junction vortex at the base of the cylinder. It is also found that the detachment and advection of patches of vorticity from the downstream part of the legs of the necklace vortices can induce large instantaneous bed shear stress values. When the critical bed shear stress value for sediment entrainment on a flat surface is adjusted for bed slope effects, the LES simulation correctly predicts that the distribution of the mean bed shear stress is consistent with equilibrium scour conditions.
    • Download: (2.432Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coherent Structures in the Flow Field around a Circular Cylinder with Scour Hole

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/26493
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorG. Kirkil
    contributor authorS. G. Constantinescu
    contributor authorR. Ettema
    date accessioned2017-05-08T20:46:06Z
    date available2017-05-08T20:46:06Z
    date copyrightMay 2008
    date issued2008
    identifier other%28asce%290733-9429%282008%29134%3A5%28572%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/26493
    description abstractLarge-eddy simulation (LES) and laboratory-flume visualizations were used to investigate coherent structures present in the flow field around a circular cylinder located in a scour hole. The bathymetry corresponds to equilibrium scour conditions and is fixed in LES. The flow parameters in the simulation correspond to the experimental conditions in which the approach flow is fully turbulent. Detailed consideration is given to the interaction of the horseshoe vortex (HV) system within the scour hole with the detached shear layers formed from the cylinder, and the near bed turbulence. It is found that the overall structure of the HV system varies considerably in space and time, though a large, relatively stable, primary necklace vortex is present at practically all times inside the scour hole. The simulation captures the presence of bimodal chaotic oscillations inside the HV system, as well as the sharp increase in the resolved turbulent kinetic energy levels and pressure fluctuations reported in prior experimental investigations. High levels of the mean bed shear stress are observed beneath the primary necklace vortex, especially over the region where the bimodal oscillations are strong, as well as beneath the small junction vortex at the base of the cylinder. It is also found that the detachment and advection of patches of vorticity from the downstream part of the legs of the necklace vortices can induce large instantaneous bed shear stress values. When the critical bed shear stress value for sediment entrainment on a flat surface is adjusted for bed slope effects, the LES simulation correctly predicts that the distribution of the mean bed shear stress is consistent with equilibrium scour conditions.
    publisherAmerican Society of Civil Engineers
    titleCoherent Structures in the Flow Field around a Circular Cylinder with Scour Hole
    typeJournal Paper
    journal volume134
    journal issue5
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2008)134:5(572)
    treeJournal of Hydraulic Engineering:;2008:;Volume ( 134 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian