YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Conservative Formulation for Natural Open Channels and Finite-Element Implementation

    Source: Journal of Hydraulic Engineering:;2007:;Volume ( 133 ):;issue: 009
    Author:
    Jie Chen
    ,
    P. M. Steffler
    ,
    F. E. Hicks
    DOI: 10.1061/(ASCE)0733-9429(2007)133:9(1064)
    Publisher: American Society of Civil Engineers
    Abstract: This investigation considers an approximate formulation of the St. Venant equations for natural channels, in which the fully conservative form is developed by revising the boundary pressure term accounting for the topographic variation in the momentum equation. As such a formulation has the potential to enhance the performance of existing models used in practice, the accuracy implications for this approximate formulation are examined using an error analysis for a simplified case. Further, an energy calculation is performed which illustrates that an earlier formulation actually results in energy gain for some cases. A more general formula for the constant water surface elevation that corrects this is introduced and tested. It is found that the refined formulation presented here is accurate for hydraulic jumps, steep surge waves, and flood wave propagation in natural channels. The shock capturing capability of the approximate formulation is illustrated for both steady- and unsteady-flow situations using the finite-element method, for which this approximate equation formulation adapts naturally. Using the characteristic-dissipative-Galerkin finite-element scheme, good results are obtained for the case of a hydraulic jump in a diverging rectangular channel, with the maximum percent error associated with the approximate formulation determined to be only 0.34%. For the case of dam break wave propagation in a converging and diverging rectangular channel, the model performs similarly well, with the maximum error only 0.0064%. Further, the approximate formulation is used to simulate the flood routing in a natural channel, the Oldman River in southern Alberta. The computational results are in good agreement with the observed data. The arrival time of peak flow is
    • Download: (165.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Conservative Formulation for Natural Open Channels and Finite-Element Implementation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/26352
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorJie Chen
    contributor authorP. M. Steffler
    contributor authorF. E. Hicks
    date accessioned2017-05-08T20:45:53Z
    date available2017-05-08T20:45:53Z
    date copyrightSeptember 2007
    date issued2007
    identifier other%28asce%290733-9429%282007%29133%3A9%281064%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/26352
    description abstractThis investigation considers an approximate formulation of the St. Venant equations for natural channels, in which the fully conservative form is developed by revising the boundary pressure term accounting for the topographic variation in the momentum equation. As such a formulation has the potential to enhance the performance of existing models used in practice, the accuracy implications for this approximate formulation are examined using an error analysis for a simplified case. Further, an energy calculation is performed which illustrates that an earlier formulation actually results in energy gain for some cases. A more general formula for the constant water surface elevation that corrects this is introduced and tested. It is found that the refined formulation presented here is accurate for hydraulic jumps, steep surge waves, and flood wave propagation in natural channels. The shock capturing capability of the approximate formulation is illustrated for both steady- and unsteady-flow situations using the finite-element method, for which this approximate equation formulation adapts naturally. Using the characteristic-dissipative-Galerkin finite-element scheme, good results are obtained for the case of a hydraulic jump in a diverging rectangular channel, with the maximum percent error associated with the approximate formulation determined to be only 0.34%. For the case of dam break wave propagation in a converging and diverging rectangular channel, the model performs similarly well, with the maximum error only 0.0064%. Further, the approximate formulation is used to simulate the flood routing in a natural channel, the Oldman River in southern Alberta. The computational results are in good agreement with the observed data. The arrival time of peak flow is
    publisherAmerican Society of Civil Engineers
    titleConservative Formulation for Natural Open Channels and Finite-Element Implementation
    typeJournal Paper
    journal volume133
    journal issue9
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2007)133:9(1064)
    treeJournal of Hydraulic Engineering:;2007:;Volume ( 133 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian