YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Godunov-Type Solutions for Transient Flows in Sewers

    Source: Journal of Hydraulic Engineering:;2006:;Volume ( 132 ):;issue: 008
    Author:
    Arturo S. León
    ,
    Mohamed S. Ghidaoui
    ,
    Arthur R. Schmidt
    ,
    Marcelo H. García
    DOI: 10.1061/(ASCE)0733-9429(2006)132:8(800)
    Publisher: American Society of Civil Engineers
    Abstract: This work is part of a long term project which aims at developing a hydraulic model for real-time simulation of unsteady flows in sewers ranging from gravity flows, to partly gravity–partly surcharged flows to fully surcharged flows. The success of this project hinges on the ability of the hydraulic model to handle a wide range of complex boundaries and to provide accurate solutions with the least central processing unit time. This first paper focuses on the development and assessment of two second-order explicit finite-volume Godunov-type schemes (GTS) for unsteady gravity flows in sewers, but with no surcharging. Traditionally, hydraulic transients have been modeled using the method of characteristics (MOC), which is noted for its ability to handle complex boundary conditions (BCs). The two GTS described herein incorporate BCs in a similar manner to the MOC. The accuracy and efficiency of these GTS schemes are investigated using problems whose solution contains features that are relevant to transient flows in sewers such as shock, expansion, and roll waves. The results show that these GTS schemes are significantly faster to execute than the fixed-grid MOC scheme with space-line interpolation, and in some cases, the accuracy produced by the two GTS schemes cannot be matched by the accuracy of the MOC scheme, even when a Courant number close to one and a large number of grids is used. Furthermore, unlike the MOC solutions, which exhibit increasing numerical dissipation with decreasing Courant numbers, the resolution of the shock fronts was maintained by the GTS schemes even for very low Courant numbers (0.001).
    • Download: (228.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Godunov-Type Solutions for Transient Flows in Sewers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/26155
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorArturo S. León
    contributor authorMohamed S. Ghidaoui
    contributor authorArthur R. Schmidt
    contributor authorMarcelo H. García
    date accessioned2017-05-08T20:45:33Z
    date available2017-05-08T20:45:33Z
    date copyrightAugust 2006
    date issued2006
    identifier other%28asce%290733-9429%282006%29132%3A8%28800%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/26155
    description abstractThis work is part of a long term project which aims at developing a hydraulic model for real-time simulation of unsteady flows in sewers ranging from gravity flows, to partly gravity–partly surcharged flows to fully surcharged flows. The success of this project hinges on the ability of the hydraulic model to handle a wide range of complex boundaries and to provide accurate solutions with the least central processing unit time. This first paper focuses on the development and assessment of two second-order explicit finite-volume Godunov-type schemes (GTS) for unsteady gravity flows in sewers, but with no surcharging. Traditionally, hydraulic transients have been modeled using the method of characteristics (MOC), which is noted for its ability to handle complex boundary conditions (BCs). The two GTS described herein incorporate BCs in a similar manner to the MOC. The accuracy and efficiency of these GTS schemes are investigated using problems whose solution contains features that are relevant to transient flows in sewers such as shock, expansion, and roll waves. The results show that these GTS schemes are significantly faster to execute than the fixed-grid MOC scheme with space-line interpolation, and in some cases, the accuracy produced by the two GTS schemes cannot be matched by the accuracy of the MOC scheme, even when a Courant number close to one and a large number of grids is used. Furthermore, unlike the MOC solutions, which exhibit increasing numerical dissipation with decreasing Courant numbers, the resolution of the shock fronts was maintained by the GTS schemes even for very low Courant numbers (0.001).
    publisherAmerican Society of Civil Engineers
    titleGodunov-Type Solutions for Transient Flows in Sewers
    typeJournal Paper
    journal volume132
    journal issue8
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2006)132:8(800)
    treeJournal of Hydraulic Engineering:;2006:;Volume ( 132 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian