YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unsteady Effluent Dispersion in a Round Jet Interacting with an Oscillating Cross-Flow

    Source: Journal of Hydraulic Engineering:;2004:;Volume ( 130 ):;issue: 007
    Author:
    L. P. Xia
    ,
    K. M. Lam
    DOI: 10.1061/(ASCE)0733-9429(2004)130:7(667)
    Publisher: American Society of Civil Engineers
    Abstract: Dispersion of a vertical round jet issuing into an unsteady cross-flow is investigated by laboratory and numerical experiments. An experimental technique has previously been devised to simulate a sinusoidally oscillating cross-flow situation with a nonzero mean flow velocity. The parameters of the cross-flow can be selected with ease. With this experimental technique, 12 cross-flow situations with systematic varying flow parameters are produced. The dispersion pattern of a jet in each cross-flow situation is studied by phase-locked dye visualizations and the dilution level of jet effluent is estimated using image processing. It is found that in a cross-flow of a large unsteadiness parameter, the jet dispersion pattern is significantly different from that of the same jet in a steady cross-flow. The jet effluent is organized into successive large-scale effluent clouds which are connected on the inner side by a bent-over effluent fetch. Specially designed experiments using time-controlled dye ejection are performed to investigate the formation mechanism of the effluent structures. Computational fluid dynamics (CFD) studies are carried out to supplement the experimental concentration data. In addition, the CFD results help to support the formation mechanism of the effluent flow structures and to explore their dynamics. In the time-averaged sense, unsteadiness in the oscillating cross-flow leads to a two- to threefold increase in jet width. The reduction in time-averaged concentration level of jet effluent is not as dramatic because there still remains high concentration of effluent inside the effluent clouds.
    • Download: (640.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unsteady Effluent Dispersion in a Round Jet Interacting with an Oscillating Cross-Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/25761
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorL. P. Xia
    contributor authorK. M. Lam
    date accessioned2017-05-08T20:44:54Z
    date available2017-05-08T20:44:54Z
    date copyrightJuly 2004
    date issued2004
    identifier other%28asce%290733-9429%282004%29130%3A7%28667%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/25761
    description abstractDispersion of a vertical round jet issuing into an unsteady cross-flow is investigated by laboratory and numerical experiments. An experimental technique has previously been devised to simulate a sinusoidally oscillating cross-flow situation with a nonzero mean flow velocity. The parameters of the cross-flow can be selected with ease. With this experimental technique, 12 cross-flow situations with systematic varying flow parameters are produced. The dispersion pattern of a jet in each cross-flow situation is studied by phase-locked dye visualizations and the dilution level of jet effluent is estimated using image processing. It is found that in a cross-flow of a large unsteadiness parameter, the jet dispersion pattern is significantly different from that of the same jet in a steady cross-flow. The jet effluent is organized into successive large-scale effluent clouds which are connected on the inner side by a bent-over effluent fetch. Specially designed experiments using time-controlled dye ejection are performed to investigate the formation mechanism of the effluent structures. Computational fluid dynamics (CFD) studies are carried out to supplement the experimental concentration data. In addition, the CFD results help to support the formation mechanism of the effluent flow structures and to explore their dynamics. In the time-averaged sense, unsteadiness in the oscillating cross-flow leads to a two- to threefold increase in jet width. The reduction in time-averaged concentration level of jet effluent is not as dramatic because there still remains high concentration of effluent inside the effluent clouds.
    publisherAmerican Society of Civil Engineers
    titleUnsteady Effluent Dispersion in a Round Jet Interacting with an Oscillating Cross-Flow
    typeJournal Paper
    journal volume130
    journal issue7
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2004)130:7(667)
    treeJournal of Hydraulic Engineering:;2004:;Volume ( 130 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian