YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior of Oil and Gas from Deepwater Blowouts

    Source: Journal of Hydraulic Engineering:;2004:;Volume ( 130 ):;issue: 006
    Author:
    Poojitha D. Yapa
    ,
    Fanghui Chen
    DOI: 10.1061/(ASCE)0733-9429(2004)130:6(540)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a detailed analysis of different deepwater blowout scenarios using the Clarkson deepwater oil and gas model (CDOG). In CDOG, hydrate formation, hydrate decomposition, gas dissolution, nonideal behavior of gas, and possible gas separation from the main plume due to strong cross-currents, are integrated with the jet/plume hydrodynamics and thermodynamics. CDOG takes into account unsteady-state three-dimensional variation of ambient currents and density stratification. Detailed comparisons between CDOG simulations and deepspill field experiments have been published. The model is used to simulate 30 deepwater blowout scenarios based on realistic cases and the results are analyzed in this paper. The scenarios demonstrate the differences in plume behavior due to different ambient conditions, different types of gas, possible hydrate formation, and variations in gas-to-oil ratio. Some key findings of these analyses follow. Oil droplet sizes affect the oil surfacing time significantly. For oil-only blowouts, the ambient conditions do not affect the oil surfacing time significantly, but the location and the size of the slick are affected. For oil and gas mixes, the surfacing time is not sensitive to the type of gas in the mix, but is somewhat dependent on the ambient conditions. In none of the cases simulated here, did free gas reach the water surface. While changing the release temperature had only an insignificant effect on the model results, changing oil type or gas-to-oil ratio did affect the model results. The analyses are useful to engineers/scientists and administrators.
    • Download: (927.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior of Oil and Gas from Deepwater Blowouts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/25741
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorPoojitha D. Yapa
    contributor authorFanghui Chen
    date accessioned2017-05-08T20:44:53Z
    date available2017-05-08T20:44:53Z
    date copyrightJune 2004
    date issued2004
    identifier other%28asce%290733-9429%282004%29130%3A6%28540%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/25741
    description abstractThis paper presents a detailed analysis of different deepwater blowout scenarios using the Clarkson deepwater oil and gas model (CDOG). In CDOG, hydrate formation, hydrate decomposition, gas dissolution, nonideal behavior of gas, and possible gas separation from the main plume due to strong cross-currents, are integrated with the jet/plume hydrodynamics and thermodynamics. CDOG takes into account unsteady-state three-dimensional variation of ambient currents and density stratification. Detailed comparisons between CDOG simulations and deepspill field experiments have been published. The model is used to simulate 30 deepwater blowout scenarios based on realistic cases and the results are analyzed in this paper. The scenarios demonstrate the differences in plume behavior due to different ambient conditions, different types of gas, possible hydrate formation, and variations in gas-to-oil ratio. Some key findings of these analyses follow. Oil droplet sizes affect the oil surfacing time significantly. For oil-only blowouts, the ambient conditions do not affect the oil surfacing time significantly, but the location and the size of the slick are affected. For oil and gas mixes, the surfacing time is not sensitive to the type of gas in the mix, but is somewhat dependent on the ambient conditions. In none of the cases simulated here, did free gas reach the water surface. While changing the release temperature had only an insignificant effect on the model results, changing oil type or gas-to-oil ratio did affect the model results. The analyses are useful to engineers/scientists and administrators.
    publisherAmerican Society of Civil Engineers
    titleBehavior of Oil and Gas from Deepwater Blowouts
    typeJournal Paper
    journal volume130
    journal issue6
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)0733-9429(2004)130:6(540)
    treeJournal of Hydraulic Engineering:;2004:;Volume ( 130 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian